Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 3: 2215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23884324

RESUMO

Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.


Assuntos
Durapatita/química , Eletricidade , Nanopartículas/química , Silício/química , Microscopia de Força Atômica
2.
Acta Biomater ; 8(9): 3468-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22613184

RESUMO

A number of studies have reported improved bone integration for calcium phosphate based materials electrically "poled" by an external electric field prior to implantation. In our study we investigated the effects of electrical polarization of a biphasic ceramic composed of 80% hydroxyapatite and 20% ß-tricalcium phosphate. As contact poling involves elevated temperatures as a prerequisite for inducing charge, we used two reference types: samples without any heat treatment and poling, and samples with no poling but heat treatment identical to that of the poled samples. All heat-treated samples (poled or unpoled) showed an improved wettability, which was attributed to a reduced hydrocarbon contamination. Heat treatment alone provoked an accelerated spreading of osteoblast-like cells, whereas on poled samples a retarded cell spreading was observed. While proliferation and several differentiation markers were not influenced by either heat treatment or poling, the release of proinflammatory cytokines interleukin-6 and -8 was significantly reduced for all heat-treated samples, irrespective of additional electrical poling. The study demonstrated that the behaviour of cells in contact with poled biphasic ceramics was influenced by two parameters: heating and charge. Our data revealed that heating of the calcium phosphate ceramics had a much more pronounced effect on cell behaviour than charge.


Assuntos
Fosfatos de Cálcio/química , Temperatura Alta , Proteínas/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência , Espectroscopia Fotoeletrônica , Reação em Cadeia da Polimerase em Tempo Real , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...