Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 27(3): 585-95, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11055440

RESUMO

X-ray crystallography has made considerable recent progress in providing static structures of ion channels. Here we describe a complementary method-systematic fluorescence scanning-that reveals the structural dynamics of a channel. Local protein motion was measured from changes in the fluorescent intensity of a fluorophore attached at one of 37 positions in the pore domain and in the S4 voltage sensor of the Shaker K+ channel. The local rearrangements that accompany activation and slow inactivation were mapped onto the homologous structure of the KcsA channel and onto models of S4. The results place clear constraints on S4 location, voltage-dependent movement, and the mechanism of coupling of S4 motion to the operation of the slow inactivation gate in the pore domain.


Assuntos
Proteínas de Bactérias , Ativação do Canal Iônico/genética , Canais de Potássio/química , Canais de Potássio/genética , Corantes Fluorescentes/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência/métodos , Relação Estrutura-Atividade
2.
J Biol Chem ; 274(9): 5474-82, 1999 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-10026160

RESUMO

The homotetrameric M2 integral membrane protein of influenza virus forms a proton-selective ion channel. An essential histidine residue (His-37) in the M2 transmembrane domain is believed to play an important role in the conduction mechanism of this channel. Also, this residue is believed to form hydrogen-bonded interactions with the ammonium group of the anti-viral compound, amantadine. A molecular model of this channel suggests that the imidazole side chains of His-37 from symmetry-related monomers of the homotetrameric pore converge to form a coordination site for transition metals. Thus, membrane currents of oocytes of Xenopus laevis expressing the M2 protein were recorded when the solution bathing the oocytes contained various transition metals. Membrane currents were strongly and reversibly inhibited by Cu2+ with biphasic reaction kinetics. The biphasic inhibition curves may be explained by a two-site model involving a fast-binding peripheral site with low specificity for divalent metal ions, as well as a high affinity site (Kdiss approximately 2 microM) that lies deep within the pore and shows rather slow-binding kinetics (kon = 18.6 +/- 0.9 M-1 s-1). The pH dependence of the interaction with the high affinity Cu2+-binding site parallels the pH dependence of inhibition by amantadine, which has previously been ascribed to protonation of His-37. The voltage dependence of the inhibition at the high affinity site indicates that the binding site lies within the transmembrane region of the pore. Furthermore, the inhibition by Cu2+ could be prevented by prior application of the reversible blocker of M2 channel activity, BL-1743, providing further support for the location of the site within the pore region of M2. Finally, substitutions of His-37 by alanine or glycine eliminated the high affinity site and resulted in membrane currents that were only partially inhibited at millimolar concentrations of Cu2+. Binding of Cu2+ to the high affinity site resulted in an approximately equal inhibition of both inward and outward currents. The wild-type protein showed very high specificity for Cu2+ and was only partially inhibited by 1 mM Ni2+, Pt2+, and Zn2+. These data are discussed in terms of the functional role of His-37 in the mechanism of proton translocation through the channel.


Assuntos
Cobre/farmacologia , Proteínas da Matriz Viral/metabolismo , Animais , Sítios de Ligação , Cobre/metabolismo , Feminino , Vírus da Influenza A/metabolismo , Transporte de Íons , Mutagênese Sítio-Dirigida , Prótons , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Xenopus laevis
3.
Nature ; 402(6763): 813-7, 1999 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-10617202

RESUMO

Voltage-gated ion channels underlie the generation of action potentials and trigger neurosecretion and muscle contraction. These channels consist of an inner pore-forming domain, which contains the ion permeation pathway and elements of its gates, together with four voltage-sensing domains, which regulate the gates. To understand the mechanism of voltage sensing it is necessary to define the structure and motion of the S4 segment, the portion of each voltage-sensing domain that moves charged residues across the membrane in response to voltage change. We have addressed this problem by using fluorescence resonance energy transfer as a spectroscopic ruler to determine distances between S4s in the Shaker K+ channel in different gating states. Here we provide evidence consistent with S4 being a tilted helix that twists during activation. We propose that helical twist contributes to the movement of charged side chains across the membrane electric field and that it is involved in coupling voltage sensing to gating.


Assuntos
Ativação do Canal Iônico , Canais de Potássio/química , Animais , Eletroquímica , Mutagênese Sítio-Dirigida , Canais de Potássio/genética , Canais de Potássio/metabolismo , Conformação Proteica , Superfamília Shaker de Canais de Potássio , Espectrometria de Fluorescência/métodos , Xenopus
4.
Proc Natl Acad Sci U S A ; 94(21): 11301-6, 1997 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-9326604

RESUMO

The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.


Assuntos
Vírus da Influenza A/fisiologia , Conformação Proteica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Simulação por Computador , Cisteína , Condutividade Elétrica , Feminino , Canais Iônicos/química , Canais Iônicos/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/fisiologia , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...