Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580871

RESUMO

Different types of metals, including manganese (Mn), are constantly encountered in various environmental matrices due to natural and anthropogenic activities. They induce a sustained inflammatory response in various organs, which is considered to be an important priming event in the pathogenesis of several diseases. Mn-induced neuroinflammation and subsequent neurodegeneration are well recognized. However, emerging data suggest that occupationally and environmentally relevant levels may affect various organs, including the lungs. Therefore, the present study was carried out to investigate the effects of Mn (as Mn2+) exposure on the inflammatory response in human normal bronchial (BEAS-2B) and adenocarcinoma alveolar basal (A549) epithelial cells, as well as in murine macrophages (J774). Mn2+ exposure significantly induced mRNA and protein expression of various pro-inflammatory mediators (cytokines and chemokines) in all cells compared to corresponding vehicle controls. Furthermore, Mn2+ treatment also led to increased phosphorylation of extracellular-signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-kB) p65 in both epithelial cells and macrophages. As expected, cells treated with inhibitors of ERK1/2 (PD98059) and NF-kB p65 (IMD0354) effectively mitigated the expression of various pro-inflammatory mediators induced by Mn2+, suggesting that ERK/NF-kB pathways have a critical role in the Mn2+-induced inflammatory response. Further, in vivo studies are required to confirm these in vitro findings to support clinical translation.

2.
Toxicol Appl Pharmacol ; 485: 116904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503349

RESUMO

Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 µM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.


Assuntos
Apoptose , Células Epiteliais , Pulmão , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células A549 , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos de Manganês , Manganês/toxicidade , Linhagem Celular , Cloretos/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga
3.
Toxicol Ind Health ; 40(3): 125-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243157

RESUMO

Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.


Assuntos
Flavanonas , Nanopartículas Metálicas , Prata , Humanos , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Flavonoides , Células Sanguíneas/metabolismo , Caspases
4.
Inflammopharmacology ; 32(1): 747-761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947914

RESUMO

Emphysema is one of the major components of chronic obstructive pulmonary disease (COPD), which is characterised by the destruction and enlargement of air spaces, leading to airflow limitation and dyspnoea, finally progressing to oxygen dependency. The alveolar wall destruction is due to chronic inflammation, oxidative stress, apoptosis, and proteinase/anti-proteinase imbalance. So far, there has been no effective therapy for patients with COPD. We evaluated the therapeutic efficacy of tannic acid (TA), a naturally occurring plant-derived polyphenol in the murine emphysema model. In C57BL/6 J mice, we established emphysema by intratracheal instillation of elastase (EL). Then, mice were treated with TA and evaluated 1 and 21 days post-EL instillation. After 24 h, TA treatment significantly reduced EL-induced histopathological alterations, infiltrating leukocytes, and gene expression of markers of inflammation and apoptosis. Similarly, after 21 days, TA treatment suppressed the mean linear intercept, gene expression of proteinases, and increased elastic fiber contents in the lungs when compared to the EL-alone group. Furthermore, EL induced the activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) p65 pathways in the lungs was suppressed by TA treatment. In summary, TA has the potential to mitigate EL-induced inflammation, apoptosis, proteinase/anti-proteinase imbalance, and subsequent emphysema in mice.


Assuntos
Enfisema , Pneumonia , Polifenóis , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Inflamação/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Peptídeo Hidrolases
5.
Inflammopharmacology ; 31(5): 2311-2336, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37410224

RESUMO

Respiratory illnesses impose a significant health burden and cause deaths worldwide. Despite many advanced strategies to improve patient outcomes, they are often less effective. There is still considerable room for improvement in the treatment of various respiratory diseases. In recent years, alternative medicinal agents derived from food plants have shown better beneficial effects against a wide variety of disease models, including cancer. In this regard, kaempferol (KMF) and its derivatives are the most commonly found dietary flavonols. They have been found to exhibit protective effects on multiple chronic diseases like diabetes, fibrosis, and so on. A few recent articles have reviewed the pharmacological actions of KMF in cancer, central nervous system diseases, and chronic inflammatory diseases. However, there is no comprehensive review that exists regarding the beneficial effects of KMF and its derivatives on both malignant- and non-malignant respiratory diseases. Many experimental studies reveal that KMF and its derivatives are helpful in managing a wide range of respiratory diseases, including acute lung injury, fibrosis, asthma, cancer, and chronic obstructive pulmonary disease, and their underlying molecular mechanisms. In addition, we also discussed the chemistry and sources, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, methods to enhance bioavailability, as well as our perspective on future research with KMF and its derivatives.


Assuntos
Neoplasias , Doenças Respiratórias , Humanos , Quempferóis/farmacologia , Doenças Respiratórias/tratamento farmacológico , Neoplasias/tratamento farmacológico , Modelos Teóricos , Fibrose
6.
Microrna ; 11(3): 206-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029069

RESUMO

BACKGROUND: The transforming growth factor-beta1 (TGF-ß1)-induced epithelial-tomesenchymal transition (EMT) has a crucial effect on the progression and metastasis of lung cancer cells. OBJECTIVE: The purpose of this study was to investigate whether microRNA (miR)-16 can suppress TGF-ß1-induced EMT and proliferation in human lung adenocarcinoma cell line (A549). METHODS: Quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-16. The hallmarks of EMT were assessed by RT-qPCR, Western blotting, and cell proliferation assay. A bioinformatics tool was used to identify the putative target of miR-16. The activation of TGF-ß1/Smad3 signaling was analysed using Western blotting. RESULTS: Our results showed that miR-16 expression was significantly down-regulated by TGF-ß1 in A549 cells. Moreover, agomir of miR-16 suppressed TGF-ß1-induced EMT and cell proliferation. Computational algorithms predicted that the 3'-untranslated regions (3'-UTRs) of Smad3 are direct targets of miR-16. In addition, miR-16 mimic was found to inhibit the TGF-ß1-induced activation of the TGF-ß1/Smad3 pathway, suggesting that miR-16 may function partly through regulating Smad3. CONCLUSION: Our results demonstrated that overexpression of miR-16 suppressed the expression and activation of Smad3, and ultimately inhibited TGF-ß1-induced EMT and proliferation in A549 cells. The present findings support further investigation of the anti-cancer effect of miR-16 in animal models of lung cancer to validate the therapeutic potential.


Assuntos
Adenocarcinoma de Pulmão , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , MicroRNAs , Humanos , Adenocarcinoma de Pulmão/genética , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Fator de Crescimento Transformador beta1/farmacologia , Células A549
7.
Environ Toxicol Pharmacol ; 94: 103922, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779705

RESUMO

Arsenic (As), a toxic metalloid, primarily originates from both natural and anthropogenic activities. Reports suggested that millions of people globally exposed to high levels of naturally occurring As compounds via inhalation and ingestion. There is evidence that As is a well-known lung carcinogen. However, there has been relatively little evidence suggesting its non-malignant lung effects. This review comprehensively summarises current experimental and clinical studies implicating the association of As exposure and the development of several non-malignant lung diseases. Experimental studies provided evidence that As exposure induces redox imbalance, apoptosis, inflammatory response, epithelial-to-mesenchymal transition (EMT), and affected normal lung development through alteration of the components of intracellular signaling cascades. In addition, we also discuss the sources and possible mechanisms of As influx and efflux in the lung. Finally, current experimental studies on treatment strategies using phytochemicals and our perspective on future research with As are also discussed.


Assuntos
Arsênio , Arsenicais , Pneumopatias , Arsênio/toxicidade , Carcinógenos/toxicidade , Humanos , Pulmão , Pneumopatias/induzido quimicamente
8.
J Appl Toxicol ; 42(1): 103-129, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237170

RESUMO

Manganese (Mn) is an essential trace element for humans, but long-term environmental or occupational exposures can lead to numerous health problems. Although many studies have identified an association between Mn exposures and neurological abnormalities, emerging data suggest that occupationally and environmentally relevant levels of Mn may also be linked to multiple organ dysfunction in the general population. In this regard, many experimental and clinical studies provide support for a causal link between Mn exposure and structural and functional changes that are responsible for organ dysfunction in major organs like lung, liver, and kidney. The underlying mechanisms suggested to Mn toxicity include altered activities of the components of intracellular signaling cascades, oxidative stress, apoptosis, affected cell cycle regulation, autophagy, angiogenesis, and an inflammatory response. We further discussed the sources and possible mechanisms of Mn absorption and distribution in different organs. Finally, treatment strategies available for treating Mn toxicity as well as directions for future studies were discussed.


Assuntos
Exposição Ambiental/efeitos adversos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Manganês/toxicidade , Animais , Humanos , Rim/fisiopatologia , Fígado/fisiopatologia , Pulmão/fisiopatologia , Exposição Ocupacional/efeitos adversos
10.
PLoS One ; 16(4): e0249408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33819290

RESUMO

BACKGROUND: An appropriate specimen is of paramount importance in Real Time reverse transcription-polymerase chain reaction (rRT-PCR) based diagnosis of novel coronavirus (nCoV) disease (COVID-19). Thus, it's pertinent to evaluate various diversified clinical specimens' diagnostic utility in both diagnosis and follow-up of COVID-19. METHODS: A total of 924 initial specimens from 130 COVID-19 symptomatic cases before initiation of treatment and 665 follow up specimens from 15 randomly selected cases comprising of equal number of nasopharyngeal swab (NPS), oropharyngeal swab (OPS), combined NPS and OPS (Combined swab), sputum, plasma, serum and urine were evaluated by rRT-PCR. RESULTS: Demographic analysis showed males (86) twice more affected by COVID-19 than females (44) (p = 0.00001). Combined swabs showed a positivity rate of 100% followed by NPS (91.5%), OPS (72.3%), sputum (63%), while nCoV was found undetected in urine, plasma and serum specimens. The lowest cycle threshold (Ct) values of targeted genes E, ORF1b and RdRP are 10.56, 10.14 and 12.26 respectively and their lowest average Ct values were found in combined swab which indicates high viral load in combined swab among all other specimen types. Analysis of 665 follow-up multi-varied specimens also showed combined swab as the last specimen among all specimen types to become negative, after an average 6.6 (range 4-10) days post-treatment, having lowest (15.48) and average (29.96) Ct values of ORF1b respectively indicating posterior nasopharyngeal tract as primary nCoV afflicted site with high viral load. CONCLUSION: The combined swab may be recommended as a more appropriate specimen for both diagnosis and monitoring of COVID-19 treatment by rRT-PCR for assessing virus clearance to help physicians in taking evidence-based decision before discharging patients. Implementing combined swabs globally will definitely help in management and control of the pandemic, as it is the need of the hour.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19 , RNA Viral , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes , Adolescente , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/virologia , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Feminino , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Orofaringe/virologia , RNA Viral/sangue , RNA Viral/isolamento & purificação , RNA Viral/urina , Escarro/virologia , Adulto Jovem
11.
Ecotoxicol Environ Saf ; 205: 111138, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836156

RESUMO

Nitrobenzene, nitrotoluenes and nitrobenzoic acid are toxic and mutagenic. Their removal from the environment is necessary to avoid health and environmental damage. In this study, Cupriavidus strain a3 was found to utilize 2-nitrotoluene (2NT), 3-nitrotoluene (3NT), 4-nitrotoluene (4NT), nitrobenzene (NB) and 2-nitrobenzoic acid (2NBA) as carbon and nitrogen source, resulting in their detoxification. The metabolism involved reductive transformation of nitroaromatics to the corresponding amines followed by cleavage of amino group to release ammonia. Cell free extract showed nitroreductase activity in the range of 310-389 units/mg. NB was reduced to form benzamine and 4-aminophenol, 2NT was reduced to 2-aminotoluene, whereas 2NBA was reduced to form 2-aminobenzoic acid. Similarly, 3NT was metabolized to 3-aminotoluene and 2-amino-4-methylphenol, while 4NT was reduced to 4-nitrosotoluene and 4-aminotoluene. Cytotoxicity and apoptosis assays using Jurkat cell line, and Ames test were used to evaluate the detoxification of nitroaromatics during biodegradation. Biodegradation with Cupriavidus resulted in 2.6-11 fold increase in cell viability, 1.3-2.3 fold reduction in apoptosis, 1.6-55 fold reduction in caspase-3 activation, and complete disappearance of mutagenic activity. In soil microcosm, bioaugmentation with Cupriavidus resulted in 16-59% degradation of various nitroaromatics, as against <14% degradation without bioaugmentation. Thus, the present study reflects promising capability of Cupriavidus strain a3 in degradation and detoxification of multiple nitroaromatics.


Assuntos
Biodegradação Ambiental , Cupriavidus/fisiologia , Poluentes Ambientais/metabolismo , Nitrobenzenos , Solo , Tolueno/análogos & derivados , Toluidinas
12.
Cell Prolif ; 53(4): e12749, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32167212

RESUMO

OBJECTIVES: Given that autophagy inhibition is a feasible way to enhance sensitivity of cancer cells towards chemotherapeutic agents, identifying potent autophagy inhibitor has obvious clinical relevance. Here, we investigated ability of TN-16, a microtubule disrupting agent, on modulation of autophagic flux and its significance in promoting in vitro and in vivo cancer cell death. MATERIALS AND METHODS: The effect of TN-16 on cancer cell proliferation, cell division, autophagic process and apoptotic signalling was assessed by various biochemical (Western blot and SRB assay), morphological (TEM, SEM, confocal microscopy) and flowcytometric assays. In vivo anti-tumour efficacy of TN-16 was investigated in syngeneic mouse model of breast cancer. RESULTS: TN-16 inhibited cancer cell proliferation by impairing late-stage autophagy and induction of apoptosis. Inhibition of autophagic flux was demonstrated by accumulation of autophagy-specific substrate p62 and lack of additional LC3-II turnover in the presence of lysosomotropic agent. The effect was validated by confocal micrographs showing diminished autophagosome-lysosome fusion. Further studies revealed that TN-16-mediated inhibition of autophagic flux promotes apoptotic cell death. Consistent with in vitro data, results of our in vivo study revealed that TN-16-mediated tumour growth suppression is associated with blockade of autophagic flux and enhanced apoptosis. CONCLUSIONS: Our data signify that TN-16 is a potent autophagy flux inhibitor and might be suitable for (pre-) clinical use as standard inhibitor of autophagy with anti-cancer activity.


Assuntos
Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pirrolidinonas/uso terapêutico , Moduladores de Tubulina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Pirrolidinonas/farmacologia , Moduladores de Tubulina/farmacologia
13.
Biol Trace Elem Res ; 183(2): 245-253, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28914406

RESUMO

Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 µM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.


Assuntos
Manganês/farmacologia , Neuroblastoma/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Análise por Conglomerados , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transmissão Sináptica/efeitos dos fármacos
14.
Ecotoxicol Environ Saf ; 142: 555-566, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28482324

RESUMO

Exposure to pre-concentrated inlet or outlet STP wastewater extracts at different concentrations (0.001% to 1%) induced dose-dependent toxicity in MCF-7 cells, whereas drinking water extracts did not induce cytotoxicity in cells treated. GC-MS analysis revealed the occurrence of xenobiotic compounds (Benzene, Phthalate, etc.) in inlet/outlet wastewater extracts. Cells exposed to inlet/outlet extract showed elevated levels of reactive oxygen species (ROS: inlet: 186.58%, p<0.05, outlet, 147.8%, p<0.01) and loss of mitochondrial membrane potential (Δψm: inlet, 74.91%, p<0.01; outlet, 86.70%, p<0.05) compared to the control. These concentrations induced DNA damage (Tail length: inlet: 34.4%, p<0.05, outlet, 26.7%, p<0.05) in treated cells compared to the control (Tail length: 7.5%). Cell cycle analysis displayed drastic reduction in the G1 phase in treated cells (inlet, G1:45.0%; outlet, G1:58.3%) compared to the control (G1:67.3%). Treated cells showed 45.18% and 28.0% apoptosis compared to the control (1.2%). Drinking water extracts did not show any significant alterations with respect to ROS, Δψm, DNA damage, cell cycle and apoptosis compared to the control. Genes involved in cell cycle and apoptosis were found to be differentially expressed in cells exposed to inlet/outlet extracts. Herein, we propose cell-based toxicity assays to evaluate the efficacies of wastewater treatment and recycling processes.


Assuntos
Água Potável/análise , Reciclagem , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Apoptose/efeitos dos fármacos , Análise da Demanda Biológica de Oxigênio , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Citometria de Fluxo , Humanos , Índia , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Águas Residuárias/análise , Poluentes Químicos da Água/análise
15.
World J Microbiol Biotechnol ; 33(6): 121, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28523623

RESUMO

The engineered-Soil Aquifer Treatment (e-SAT) system was exploited for the biological degradation of Sulfamethoxazole (SMX) which is known to bio-accumulate in the environment. The fate of SMX in soil column was studied through laboratory simulation for a period of 90 days. About 20 ppm SMX concentration could be removed in four consecutive cycles in e-SAT. To understand the microbial community change and biological degradation of SMX in e-SAT system, metagenomic analysis was performed for the soil samples before (A-EBD) and after SMX exposure (B-EBD) in the e-SAT. Four bacterial phyla were found to be present in both the samples, with sample B-EBD showing increased abundance for Actinobacteria, Bacteroidetes, Firmicutes and decreased Proteobacterial abundance compared to A-EBD. The unclassified bacteria were found to be abundant in B-EBD compared to A-EBD. At class level, classes such as Bacilli, Negativicutes, Deltaproteobacteria, and Bacteroidia emerged in sample B-EBD owing to SMX treatment, while Burkholderiales and Nitrosomonadales appeared to be dominant at order level after SMX treatment. Furthermore, in response to SMX treatment, the family Nitrosomonadaceae appeared to be dominant. Pseudomonas was the most dominating bacterial genus in A-EBD whereas Cupriavidus dominated in sample B-EBD. Additionally, the sulfur oxidizing bacteria were enriched in the B-EBD sample, signifying efficient electron transfer and hence organic molecule degradation in the e-SAT system. Results of this study offer new insights into understanding of microbial community shift during the biodegradation of SMX.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Água Subterrânea/microbiologia , Microbiologia do Solo , Sulfametoxazol/metabolismo , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico , Índia , Metagenoma/genética , Consórcios Microbianos/genética , Filogenia , Análise de Sequência , Solo/química , Águas Residuárias/microbiologia
16.
Biol Trace Elem Res ; 178(2): 218-227, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28058665

RESUMO

In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70-80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).


Assuntos
Dano ao DNA , Leucócitos Mononucleares/metabolismo , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Células HL-60 , Humanos
17.
Biol Trace Elem Res ; 175(1): 103-111, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27234253

RESUMO

Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Osteossarcoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Linhagem Celular Tumoral , Fluoretos/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Osteossarcoma/patologia
18.
Chemosphere ; 164: 469-479, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27614039

RESUMO

Landfill soils are sources of emerging carcinogens, teratogens and mutagens in the environment. There is inadequate information on its possible health risk and cytogenotoxicity. This study evaluated chemical characterization of four simulated landfill leachates with their cytotoxicity and DNA damage in human cells. Hepatocarcinoma (HepG2), lymphoma (Jurkat) and osteosarcoma (HOS) cells, incubated with 6.25, 12.5, 25, 50, 75 and 100% of Aba Eku (AEL), Olusosun (OSL), Awotan (AWL) and Nagpur (NPL) simulated leachates for 24 h, were assessed for cell viability using MTT assay and morphological alterations. DNA damage was also assessed after 24 h treatment of cells with sub-lethal concentrations of the leachates using comet assay. Metals and organic compounds in the soil leachates were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and gas chromatography-mass spectroscopy (GC-MS) respectively. The leachates induced significant cytotoxicity in the treated cells with evidence of apoptosis; shrunken morphologies, detachment from the substratum and cytoplasmic vacuolations. Similarly, there was significant DNA damage induced in the treated cells, with increased Olive tail moment, tail length and % tail DNA. Jurkat was the most sensitive (Jurkat > HepG2 > HOS) to the cytotoxic and genotoxic effects of the leachates. All the analyzed metals except Cd, Fe, Zn and Mn were found at levels lower than standard allowable limits. 32, 17, 23 and 23 different PAHs and PCBs were detected in AEL, AWL, OSL and NPL respectively, at varying retention peak times. These toxic constituents induced the observed cytogenotoxicity in the cells and may suggest possible public health risk.


Assuntos
Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Linfoma/patologia , Osteossarcoma/patologia , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Neoplasias Ósseas/patologia , Ensaio Cometa , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Índia , Neoplasias Hepáticas/patologia , Metais Pesados/análise , Mutagênicos/análise , Nigéria , Compostos Orgânicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Células Tumorais Cultivadas , Poluentes Químicos da Água/análise
19.
Indian J Pharmacol ; 48(2): 200-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114639

RESUMO

OBJECTIVE: Chronic exposure to atrazine and other pesticides is reported to cause metabolic disorders, yet information on effects of atrazine on expression of genes relevant to mitochondrial function is largely missing. In the present study, therefore, we investigated the expression of a battery of nuclear- and mitochondrial-encoded genes involved in oxidative phosphorylation (OXPHOS) in human liver (HepG2) and rat muscle (L6) cell lines due to short-term atrazine exposure. MATERIALS AND METHODS: We have determined the EC50 values of atrazine for cytotoxicity and mitochondrial toxicity (mitotoxicity) in terms of adenosine triphosphate (ATP) content in HepG2 and L6 cells. Further, the mRNA expression of nuclear- and mitochondrial-encoded genes was analyzed using quantitative real-time polymerase chain reaction. RESULTS: The EC50 value of atrazine for mitotoxicity in HepG2 and L6 cells was found to be about 0.162 and 0.089 mM, respectively. Mitochondrial toxicity was indicated by reduction in ATP content following atrazine exposure. Atrazine exposure resulted in down-regulation of many OXPHOS subunits expression and affected biogenesis factors' expression. Most prominently, superoxide dismutase (SOD) and sirtuin 3 (SIRT3) expressions were up-regulated in HepG2 cells, whereas SIRT3 expression was alleviated in L6 cells, without significant changes in SOD levels. Mitochondrial transcription factor A (TFAM) and SIRT1 expression were significantly down-regulated in both cell lines. CONCLUSION: Results suggest that TFAM and SIRT1 could be involved in atrazine-induced mitochondrial dysfunction, and further studies can be taken up to understand the mechanism of mitochondrial toxicity. Further study can also be taken up to explore the possibility of target genes as biomarkers of pesticide toxicity.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Animais , Linhagem Celular , Células Hep G2 , Humanos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Ratos
20.
Environ Toxicol Pharmacol ; 41: 187-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26722802

RESUMO

Endosulfan, an organochlorine pesticide, is known to induce multiple disorders/abnormalities including neuro-degenerative disorders in many animal species. However, the molecular mechanism of endosulfan induced neuronal alterations is still not well understood. In the present study, the effect of sub-lethal concentration of endosulfan (3 µM) on human neuroblastoma cells (SH-SY5Y) was investigated using genomic and proteomic approaches. Microarray and 2D-PAGE followed by MALDI-TOF-MS analysis revealed differential expression of 831 transcripts and 16 proteins in exposed cells. A gene ontology enrichment analysis revealed that the differentially expressed genes and proteins were involved in variety of cellular events such as neuronal developmental pathway, immune response, cell differentiation, apoptosis, transmission of nerve impulse, axonogenesis, etc. The present study attempted to explore the possible molecular mechanism of endosulfan induced neuronal alterations in SH-SY5Y cells using an integrated genomic and proteomic approach. Based on the gene and protein profile possible mechanisms underlying endosulfan neurotoxicity were predicted.


Assuntos
Endossulfano/toxicidade , Redes Reguladoras de Genes/efeitos dos fármacos , Inseticidas/toxicidade , Neuroblastoma/genética , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...