Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 403(10): 891-905, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36002994

RESUMO

The aim of present study was to understand the mechanism of action of 2,2'-diselenobis(3-pyridinol) or DISPOL in human lung cancer (A549) cells. A549 cells were treated with 10 µM (∼IC50) of DISPOL for varying time points to corelate the intracellular redox changes with its cytotoxic effect. The results indicated that DISPOL treatment led to a time dependant decrease in the basal level of reactive oxygen species (ROS). Additionally, DISPOL treatment elevated the ratio of reduced (GSH) and oxidised (GSSG) glutathione by upregulating gamma-glutamylcysteine ligase (γ-GCL) involved in GSH biosynthesis and inhibiting the activities of redox enzymes responsible for GSH utilization and recycling, such as glutathione-S-transferase (GST) and glutathione reductase (GR). Molecular docking analysis suggests putative interactions of DISPOL with GST and GR which could account for its inhibitory effect on these enzymes. Further, DISPOL induced reductive environment preceded G1 arrest and apoptosis as evidenced by decreased expression of cell cycle genes (Cyclin D1 and Cyclin E1) and elevation of p21 and apoptotic markers (cleaved caspase 3 and cleaved PARP). The combinatorial experiments involving DISPOL and redox modulatory agents such as N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) indeed confirmed the role of reductive stress in DISPOL-induced cell death. Finally, Lipinski's rule suggests attributes of drug likeness in DISPOL. Taken together, DISPOL exhibits a novel mechanism of reductive stress-mediated cell death in A549 cells that warrants future exploration as anticancer agent.


Assuntos
Apoptose , Glutationa , Células A549 , Ciclo Celular , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Biol Macromol ; 210: 403-414, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526768

RESUMO

Curcumin, a principal component of Curcuma longa, has a long history of being used topically for wound healing. However, poor aqueous solubility of curcumin leads to poor topical absorption. Recently, gelatin based gel has been reported to overcome this issue. However, the release of curcumin from gelatin gel in the bioavailable or easily absorbable form is still a challenge. The present study reports the development of a composite gel prepared from gelatin, F127 and lecithin using temperature dependant gelation and loading of curcumin within it. Notably, the composite gel facilitated the release of curcumin entrapped within vesicles of ~400 nm size. Further, the composite gel exhibited increase in the storage modulus or gel strength, stability, pore size and hydrophobicity as compared to only gelatin gel. Finally, wound healing assay in murine model indicated that curcumin delivered through composite gel showed a significantly faster healing as compared to that delivered through organic solvent. This was also validated by histopathological and biochemical analysis showing better epithelization and collagen synthesis in the group dressed with curcumin containing composite gel. In conclusion, composite gel facilitated the release of bioavailable or easily absorbable curcumin which in turn enhanced the wound healing.


Assuntos
Curcumina , Animais , Curcumina/farmacologia , Gelatina , Lecitinas , Camundongos , Polietilenos , Polipropilenos , Cicatrização
3.
Dalton Trans ; 51(16): 6366-6377, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384953

RESUMO

Highly stable blue photoluminescent tellurium nanocomposites (Te NCs) coated with a molecular assembly of α-cyclodextrin (α-CD) have been prepared by using in situ generated solvated electrons (esol-) in the reaction media. The methodology used is rapid and green as the preparation of colloids was over in a matter of a few seconds and no hazardous agents (reducing or stabilizing) were used. Furthermore, fine control over the size of Te NCs has been demonstrated by simply varying the absorbed irradiation dose. As a matter of fact, the anisotropic property exhibited by tellurium makes it difficult to control the phase and morphology of its nanomaterials. However, unlike the majority of the previous reports, Te NCs formed by the current approach were amorphous and spherical shaped. Another interesting aspect of this work is the cyan-blue photoluminescence (PL) exhibited by the NCs. Systematic photophysical investigations indicated bandgap radiative decay as the origin of photoluminescence. A compositional analysis indicated the presence of Te(0) along with tellurium oxides (TeOx). TGA studies revealed the formation of a dense coating (∼55%) of α-CD molecules on the NCs. Pulse radiolysis-based studies evidenced the formation of Te-based transients by the solvated electron-induced reaction. Importantly, no interference of α-CD was observed in the kinetics of the transient species. Remarkable concentration-dependent killing was observed only in the case of cancerous cells, while no such trend was seen in normal healthy cells. This is a significant observation that can be utilized to achieve differential toxicity of Te nanomaterials in tumor versus normal cells.


Assuntos
Ciclodextrinas , Nanocompostos , Elétrons , Telúrio
4.
J Biomed Mater Res A ; 110(2): 304-315, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34355509

RESUMO

In this study, pluronic stabilized gelatin nanocomposite of varying hydrophilic-lipophilic balance (HLB) were synthesized to study the effect of surface hydrophobicity on their cellular uptake and in turn the delivery of a model hydrophobic bioactive compound, curcumin (CUR). Notably, the variation in HLB from 22 to 8 did not cause much change in morphology (~spherical) and surface charge (~ -6.5 mV) while marginally reducing the size of nanocomposite from 165 ± 097 nm to 134 ± 074 nm. On contrary, nanocomposites exhibited a very significant increase in their numbers, hydrophobicity as well as CUR loading with decreasing HLB values (22-8) of pluronic. Further, the cellular uptake of CUR through pluronic-gelatin nanocomposites was studied in human lung carcinoma (A549) cells. The results indicated that cellular uptake of CUR through nanocomposites followed the order HLB 22 > HLB 18 > HLB 15 > HLB 8. This was also reflected in terms of the decrease in cytotoxicity of CUR through nanocomposite of HLB 8 as compared to that of HLB 22. Interestingly, bare nanocomposite of HLB 8 showed significantly higher cytotoxicity as compared to that of HLB 22. Together these results suggested that although higher hydrophobicity of the gelatin-pluronic nanocomposite facilitated higher entrapment of CUR, the carrier per se became toxic due to its hydrophobic interaction with lipid bilayer of plasma membrane. Thus, HLB parameter is very important in designing hybrid nanocomposite systems involving protein and pluronic to ensure both bio-compatibility of the carrier and the optimum cellular delivery of the pay load.


Assuntos
Curcumina , Nanocompostos , Nanopartículas , Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Gelatina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos/química , Nanocompostos/toxicidade , Nanopartículas/química , Tamanho da Partícula , Poloxâmero/química
5.
Curr Pharm Des ; 25(28): 3034-3056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31470779

RESUMO

BACKGROUND: Cancer is the major public health problem in developing countries. The treatment of cancer requires a multimodal approach and chemotherapy is one of them. Chemotherapeutic drug is administered to cancer patients in the form of a formulation which is prepared by mixing an active ingredient (drug) with the excipient. The role of excipient in a formulation is to regulate the release, bio-distribution, and selectivity of drug within the body. METHODS: In this context, selectivity of an anticancer formulation is achieved through two mechanisms like passive and active targeting. The passive targeting of a formulation is generally through enhanced permeation retention (EPR) effect which is dictated by physical properties of the carrier such as shape and size. On the contrary, active targeting means surface functionalization of excipient with target-specific ligands and/or receptors to increase its selectivity. RESULTS: Over the past several decades, remarkable progress has been made in the development and application of an engineered excipient or carrier to treat cancer more effectively. Especially nanoparticulate systems composed of metal/liposomes/polymeric material/proteins have received significant attention in the rational design of anticancer drug formulations; for example, therapeutic agents have been integrated with nanoparticles of optimal sizes, shapes and surface properties to improve their solubility, circulation half-life, and bio-distribution. In this review article, recent literature is included to discuss the role of physicochemical properties of excipients in achieving tumour targeting through passive and active approaches. CONCLUSION: The selection of an excipient/carrier and targeting ligand plays a very important role in rational design and development of anticancer drug formulations.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Excipientes/administração & dosagem , Nanopartículas , Neoplasias/tratamento farmacológico , Portadores de Fármacos , Humanos , Lipossomos
6.
ACS Omega ; 3(6): 5958-5970, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023935

RESUMO

Hispolon (HS), a bioactive polyphenol, and its derivatives such as hispolon monomethyl ether (HME), hispolon pyrazole (HP), and hispolon monomethyl ether pyrazole (HMEP) were evaluated for comparative toxicity and antigenotoxic effects. The stability of HS derivatives in biological matrices followed the order HS < HP ≈ HME < HMEP. The cytotoxicity analysis of HS derivatives indicated that HP and HMEP were less toxic than HS and HME, respectively, in both normal and tumor cell types. The mechanisms of toxicity of HS and HME involved inhibition of thioredoxin reductase (TrxR) and/or induction of reductive stress. From the enzyme kinetic and docking studies, it was established that HS and HME interacted with the NADPH-binding domain of TrxR through electrostatic and hydrophobic bonds, resulting in inhibition of the catalytic activity. Subsequently, treatment with HS, HP, and HMEP at a nontoxic concentration of 10 µM in Chinese Hamster Ovary (CHO) cells showed significant protection against radiation (4 Gy)-induced DNA damage as assessed by micronuclei and γ-H2AX assays. In conclusion, the above results suggested the importance of phenolic and diketo groups in controlling the stability and toxicity of HS derivatives. The pyrazole derivatives, HP and HMEP, may gain significance in the development of functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...