Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401794, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945825

RESUMO

Tailoring the properties of cellulose aerogel beads was investigated in the present study by using weak organic acids as coagulants. Three different weak acids were specifically chosen, acetic acid, lactic acid and citric acid. For comparative studies, a strong acid, hydrochloric acid was examined. The production of aerogel beads by conventional dropping technique was controlled and optimized for weak acids. Aerogels were characterized by density analyses, scanning electron microscopy, nitrogen adsorption-desorption analysis, X-ray powder diffractometry and IR spectroscopy. In common, all the aerogel beads showed interconnected nanofibrillar network, high specific surface area, high pore volume, high porosity and meso- and macroporous structure. In particular, when the weakest acid (acetic acid) was used as coagulant in the regeneration bath, the lowest shrinkage was observed. As a result, the cellulose aerogel beads produced from acetic acid showed the highest values of specific surface area (423 m2·g-1) and pore volume (3.6 cm3·g-1). The porous structure can be tuned by the choice of regeneration bath having either strong acid or high concentration of weak acid. The aerogel beads were pure and showed cellulose II crystallinity. Hence this study paves an alternative path way to tailor the properties of cellulose aerogel beads.

2.
Materials (Basel) ; 15(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160985

RESUMO

Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.

3.
Sci Rep ; 11(1): 10198, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986367

RESUMO

To address the challenge of reconstructing or designing the three-dimensional microstructure of nanoporous materials, we develop a computational approach by combining the random closed packing of polydisperse spheres together with the Laguerre-Voronoi tessellation. Open-porous cellular network structures that adhere to the real pore-size distributions of the nanoporous materials are generated. As an example, κ-carrageenan aerogels are considered. The mechanical structure-property relationships are further explored by means of finite elements. Here we show that one can predict the macroscopic stress-strain curve of the bulk porous material if only the pore-size distributions, solid fractions, and Young's modulus of the pore-wall fibres are known a priori. The objective of such reconstruction and predictive modelling is to reverse engineer the parameters of their synthesis process for tailored applications. Structural and mechanical property predictions of the proposed modelling approach are shown to be in good agreement with the available experimental data. The presented approach is free of parameter-fitting and is capable of generating dispersed Voronoi structures.

4.
Molecules ; 24(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344876

RESUMO

The gas permeability of a porous material is a key property determining the impact of the material in an application such as filter/separation techniques. In the present study, aerogels of cellulose scaffolds were designed with a dual pore space system consisting of macropores with cell walls composing of mesopores and a nanofibrillar network. The gas permeability properties of these dual porous materials were compared with classical cellulose aerogels. Emulsifying the oil droplets in the hot salt-hydrate melt with a fixed amount of cellulose was performed in the presence of surfactants. The surfactants varied in physical, chemical and structural properties and a range of hydrophilic-lipophilic balance (HLB) values, 13.5 to 18. A wide range of hierarchical dual pore space systems were produced and analysed using nitrogen adsorption-desorption analysis and scanning electron microscopy. The microstructures of the dual pore system of aerogels were quantitatively characterized using image analysis methods. The gas permeability was measured and discussed with respect to the well-known model of Carman-Kozeny for open porous materials. The gas permeability values implied that the kind of the macropore channel's size, shape, their connectivity through the neck parts and the mesoporous structures on the cell walls are significantly controlling the flow resistance of air. Adaption of this new design route for cellulose-based aerogels can be suitable for advanced filters/membranes production and also biological or catalytic supporting materials since the emulsion template method allows the tailoring of the gas permeability while the nanopores of the cell walls can act simultaneously as absorbers.


Assuntos
Celulose/química , Gases/química , Géis/química , Nanoestruturas/química , Algoritmos , Fenômenos Químicos , Modelos Teóricos , Nanoestruturas/ultraestrutura , Permeabilidade , Porosidade , Propriedades de Superfície
5.
Materials (Basel) ; 11(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384442

RESUMO

A detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available in the market is given and compared with the lab scale production of droplets using pipettes and syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with non-solvent induced phase separation option is then discussed in the view of making wet particles. The main steps of particle recovery and solvent exchange are briefly described in order to pass through the final drying process. Various drying processes are overviewed and the importance of supercritical drying is highlighted. In addition, we present the characterization techniques to analyse the morphology and properties of the aerogels. The case studies of bio-aerogel (agar, alginate, cellulose, chitin, κ-carrageenan, pectin and starch) particles are reviewed. Potential applications of polysaccharide aerogel particles are briefly given. Finally, the conclusions summarize the prospects of the potential scale-up methods for producing bio-aerogel particles.

6.
Chemistry ; 24(72): 19332-19340, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30325076

RESUMO

Aerogels of polysaccharides with chelating functions can be useful as supports in many applications because of their hosting properties. This work demonstrates a facile method for the preparation of aerogels of chitosan derivative "ureido-chitin", containing ureido functional groups. The nanofibrillar networks of "ureido-chitin" were produced by the nucleophilic addition of amine groups of chitosan with isocyanic acid prepared in situ. The presence of ureido functional groups was confirmed by FTIR, solid-state CP-MAS 13 C and 15 N NMR analyses. No crosslinking of molecular chains was observed. The maximum degree of ureido functional groups was estimated to be about 66 %. Characterization by powder XRD confirmed that the polymer chains self-assembled, with the chitin polymers oriented in a highly ordered crystalline structure. The nanofibrillar networks showed no solubility under either aqueous acidic or alkaline conditions. Bio-based hosting materials of this kind with two different hosting functional groups, ureido and amine, can potentially be utilized for a wide range of applications in aqueous medium, including filters, catalysis and biomedicine.

7.
Materials (Basel) ; 11(9)2018 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-30205623

RESUMO

In the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aerogels play an important role in several applications and should be evaluated based on synthesis parameters. To this end, preparation and characterization of polysaccharide-based aerogels, such as pectin, cellulose and k-carrageenan, is first discussed. An interrelationship between their synthesis parameters and morphological entities is established. Such aerogels are usually characterized by a cellular morphology, and under compression undergo large deformations. Therefore, a nonlinear constitutive model is proposed based on large deflections in microcell walls of the aerogel network. Different sizes of the microcells within the network are identified via nitrogen desorption isotherms. Damage is initiated upon pore collapse, which is shown to result from the failure of the microcell wall fibrils. Finally, the model predictions are validated against experimental data of pectin, cellulose, and k-carrageenan aerogels. Given the micromechanical nature of the model, a clear correlation-qualitative and quantitative-between synthesis parameters and the model parameters is also substantiated. The proposed model is shown to be useful in tailoring the mechanical properties of biopolymer aerogels subject to changes in synthesis parameters.

8.
Soft Matter ; 10(18): 3218-24, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24718695

RESUMO

To the best of our knowledge, it is the first study reporting the synthesis of monolithic κ-carrageenan aerogels with meso- and macroporous structures, being unique in physical and chemical properties. We demonstrate a novel method to synthesize κ-carrageenan aerogels in which potassium thiocyanate was used as the source of specific ions. Aerogels were characterized by envelope density analysis, scanning electron microscopy, nitrogen adsorption-desorption analysis, X-ray powder diffractometry and IR spectroscopy. By varying the concentration of κ-carrageenan between 0.5 and 3 wt%, the envelope density can be linearly increased from 40 to 160 kg m⁻³. The sulphate functional groups in the wet gel and the specific ions are the key factors controlling the volume shrinkage of aerogels which average about 66%. The aerogels exhibit a fibrillar structure similar to cellulose aerogels. The fibril thickness was observed to be 10-15 nm and the specific surface area was about 230 m² g⁻¹. The existing meso- and macroporous structures were confirmed by nitrogen adsorption-desorption isotherm analysis and scanning electron microscopy. The aerogels were completely pure, free of specific ions and confirmed to be amorphous by powder X-ray diffraction. Hence, these porous materials can provide a matrix with a chelating function which can be used as a host in many applications.

9.
Nat Mater ; 10(11): 890-6, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892179

RESUMO

Biominerals exhibit morphologies, hierarchical ordering and properties that invariably surpass those of their synthetic counterparts. A key feature of these materials, which sets them apart from synthetic crystals, is their nanocomposite structure, which derives from intimate association of organic molecules with the mineral host. We here demonstrate the production of artificial biominerals where single crystals of calcite occlude a remarkable 13 wt% of 20 nm anionic diblock copolymer micelles, which act as 'pseudo-proteins'. The synthetic crystals exhibit analogous texture and defect structures to biogenic calcite crystals and are harder than pure calcite. Further, the micelles are specifically adsorbed on {104} faces and undergo a change in shape on incorporation within the crystal lattice. This system provides a unique model for understanding biomineral formation, giving insight into both the mechanism of occlusion of biomacromolecules within single crystals, and the relationship between the macroscopic mechanical properties of a crystal and its microscopic structure.


Assuntos
Carbonato de Cálcio/química , Minerais/química , Polímeros/química , Cristalização , Micelas , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...