Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-320762

RESUMO

Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses with SARS-CoV-2 causing a pandemic in 2020. Coronaviral non-structural proteins (nsp) built up the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complex has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on a native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations mainly heterotetramers are observed for SARS-CoV-2 nsp7+8. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model is proposed.

2.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3300-3310, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27554844

RESUMO

BACKGROUND: DNA polymerase processivity factors are ubiquitously present in all living organisms. Notwithstanding their high significance, the molecular details of clamps pertaining to the factors contributing to their stability are presently lacking. The bacteriophage T4 sliding clamp gp45 forms a homotrimer that besides being involved in DNA replication, moonlights as a transcription factor. Here we have carried out a detailed characterization of gp45 to understand the role of monomer-monomer interface interactions in stability and functioning of the protein. METHODS: We generated several gp45 mutants harboring either Ala or Pro substitutions at the interface residues and performed a detailed investigation using biochemical and biophysical methods including circular dichroism, fluorescence anisotropy and quenching, differential scanning calorimetry, blue-native PAGE, cross-linking, size exclusion chromatography, and dynamic light scattering. We also carried out both transcription and DNA replication to understand the properties of the wild-type and the mutant proteins. RESULTS: One specific mutation S88P leads not only to monomerization, but also results in an unstable molecule. Most interestingly, mutating either Q125 or K164 in the gp45 C-terminal domain negatively affects the stability of the N-terminal domain. We also report that these residues upon mutation to alanine make gp45 inactive for late promoter transcription, whereas strand-displacement DNA replication ability remains unaltered. CONCLUSIONS AND GENERAL SIGNIFICANCE: The results suggest that the two domains of gp45 demonstrate an "inter-monomer" crosstalk that stabilizes the trimer. We also conclude that the residue-specific interactions at the interface allow the protein to function distinctly as replication and transcription factors.


Assuntos
Bacteriófago T4/metabolismo , Transativadores/química , Transativadores/metabolismo , Substituição de Aminoácidos , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica , Transcrição Gênica
3.
FEBS Lett ; 588(9): 1839-49, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24717772

RESUMO

The RelA/SpoT enzyme produces (p)ppGpp that helps the bacterium survive during stress. The domains present in it are interspersed with connecting linkers whose functions have been poorly elucidated. We rationally analyzed the sequence and structural property of the regulatory C-terminal region in the Rel family of proteins and report the presence of an intrinsically disordered region between two successive domains in this region that are separated by a defined amino acid sequence length. We show that the length and secondary structure of this linker are conserved in Rel proteins, further signifying its importance in rendering flexibility for domain movement and domain-domain interaction.


Assuntos
Proteínas de Bactérias/química , Ligases/química , Mycobacterium smegmatis/enzimologia , Sequência de Aminoácidos , Dicroísmo Circular , Sequência Conservada , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...