Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(6): 457-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346220

RESUMO

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.


Assuntos
Transportador de Glucose Tipo 1 , Glicólise , Lesão Pulmonar , Macrófagos , Sepse , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Sepse/metabolismo , Sepse/complicações , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Camundongos , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Masculino , Glucose/metabolismo , Fagossomos/metabolismo , Líquido da Lavagem Broncoalveolar , Lipopolissacarídeos/farmacologia , Fagocitose , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/patologia , Pulmão/imunologia
2.
J Biomol Struct Dyn ; 41(21): 11373-11393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36576222

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are potent insulin sensitizers in treating type 2 diabetes. Despite being very effective in the fight against diabetes-mediated complications, PPARγ agonists are accompanied by severe side effects leading to complicated health problems, making the discovery of novel safe ligands highly pertinent. A significant intense research effort is in progress to explore the PPARγ activating potential of a wide range of natural compounds. Lemon (Citrus limon) contains various bioactive flavonoids, and eriocitrin is the major flavonoid. It possesses substantial antioxidant and anticancer, lipid-lowering activities and prevents obesity-associated metabolic diseases. Eriocitrin is metabolized to eriodictyol in the intestine, and the absorbed eriodictyol undergoes conversion to numerous metabolites in vivo. It is unclear if eriocitrin or its metabolites are responsible for their beneficial effects. We have used molecular docking, ADMET properties, drug-likeness score and molecular dynamics simulation study to find if eriocitrin and its metabolites are potent binders for PPARγ. Docking studies revealed that eriocitrin binds to PPARγ with the highest binding energy, but ADMET properties and in vivo studies show that the bioavailability of eriocitrin is very poor. Molecular dynamics studies were carried out to validate the docking results, and multiple parameters like RMSD, RMSF, Radius of gyration, SASA, hydrogen bond analysis, interaction energy, principal component analysis, Gibbs free energy and MM-PBSA were calculated. Based on our studies, eriodictyol, eriodictyol 7-O-glucuronide, eriodictyol 3'-O-glucuronide, homoeriodictyol and homoeriodictyol 7-O-glucuronide which are metabolites of eriocitrin appear to be potent partial agonists of PPARγ under physiological conditions.Communicated by Ramaswamy H. Sarma.


Assuntos
Citrus , Diabetes Mellitus Tipo 2 , Humanos , PPAR gama/agonistas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Glucuronídeos , Flavonoides/farmacologia , Suplementos Nutricionais
3.
Cell Physiol Biochem ; 55(1): 91-116, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33543862

RESUMO

BACKGROUND/AIMS: Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS: Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS: Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are ß-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by ß-hydroxymethyl-butyrate treatment. CONCLUSION: An innovative multiomics approach followed by experimental validation showed that ß-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.


Assuntos
Etanol/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Hepatopatias Alcoólicas , Deficiências na Proteostase , Sarcopenia , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Etanol/farmacologia , Feminino , Genômica , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos , Deficiências na Proteostase/dietoterapia , Deficiências na Proteostase/etiologia , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Sarcopenia/tratamento farmacológico , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/patologia
4.
Hepatology ; 73(5): 1892-1908, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32799332

RESUMO

BACKGROUND AND AIMS: Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS: Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS: Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Hepatopatias Alcoólicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Fosfatase 2/metabolismo , Sarcopenia/etiologia , Animais , Feminino , Homeostase , Humanos , Imunoprecipitação , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia
5.
Free Radic Biol Med ; 145: 284-299, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574345

RESUMO

Protein synthesis and autophagy are regulated by cellular ATP content. We tested the hypothesis that mitochondrial dysfunction, including generation of reactive oxygen species (ROS), contributes to impaired protein synthesis and increased proteolysis resulting in tissue atrophy in a comprehensive array of models. In myotubes treated with ethanol, using unbiased approaches, we identified defects in mitochondrial electron transport chain components, endogenous antioxidants, and enzymes regulating the tricarboxylic acid (TCA) cycle. Using high sensitivity respirometry, we observed impaired cellular respiration, decreased function of complexes I, II, and IV, and a reduction in oxidative phosphorylation in ethanol-treated myotubes and muscle from ethanol-fed mice. These perturbations resulted in lower skeletal muscle ATP content and redox ratio (NAD+/NADH). Ethanol also caused a leak of electrons, primarily from complex III, with generation of mitochondrial ROS and reverse electron transport. Oxidant stress with lipid peroxidation (thiobarbituric acid reactive substances) and protein oxidation (carbonylated proteins) were increased in myotubes and skeletal muscle from mice and humans with alcoholic liver disease. Ethanol also impaired succinate oxidation in the TCA cycle with decreased metabolic intermediates. MitoTEMPO, a mitochondrial specific antioxidant, reversed ethanol-induced mitochondrial perturbations (including reduced oxygen consumption, generation of ROS and oxidative stress), increased TCA cycle intermediates, and reversed impaired protein synthesis and the sarcopenic phenotype. We show that ethanol causes skeletal muscle mitochondrial dysfunction, decreased protein synthesis, and increased autophagy, and that these perturbations are reversed by targeting mitochondrial ROS.


Assuntos
Antioxidantes/metabolismo , Autofagia/genética , Mitocôndrias Musculares/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Etanol/toxicidade , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Oxirredução , Estresse Oxidativo/genética , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Cell Biol ; 39(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31138664

RESUMO

Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of ß-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of ß-catenin via glycogen synthase kinase 3ß (GSK3ß)-dependent degradation, GSK3ß expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3ß did not prevent ammonia-induced degradation of ß-catenin. Overexpression of GSK3ß-resistant variants, genetic depletion of IκB kinase ß (IKKß) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKß phosphorylated ß-catenin directly. Overexpressing ß-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3ß-independent, IKKß-dependent impairment of the ß-catenin-cMYC axis.


Assuntos
Hiperamonemia/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo , beta Catenina/química , beta Catenina/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Hiperamonemia/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Proteólise , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Análise de Sequência de RNA , Transdução de Sinais
7.
J Biol Chem ; 294(18): 7231-7244, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30872403

RESUMO

Ethanol causes dysregulated muscle protein homeostasis while simultaneously causing hepatocyte injury. Because hepatocytes are the primary site for physiological disposal of ammonia, a cytotoxic cellular metabolite generated during a number of metabolic processes, we determined whether hyperammonemia aggravates ethanol-induced muscle loss. Differentiated murine C2C12 myotubes, skeletal muscle from pair-fed or ethanol-treated mice, and human patients with alcoholic cirrhosis and healthy controls were used to quantify protein synthesis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and autophagy markers. Alcohol-metabolizing enzyme expression and activity in mouse muscle and myotubes and ureagenesis in hepatocytes were quantified. Expression and regulation of the ammonia transporters, RhBG and RhCG, were quantified by real-time PCR, immunoblots, reporter assays, biotin-tagged promoter pulldown with proteomics, and loss-of-function studies. Alcohol and aldehyde dehydrogenases were expressed and active in myotubes. Ethanol exposure impaired hepatocyte ureagenesis, induced muscle RhBG expression, and elevated muscle ammonia concentrations. Simultaneous ethanol and ammonia treatment impaired protein synthesis and mTORC1 signaling and increased autophagy with a consequent decreased myotube diameter to a greater extent than either treatment alone. Ethanol treatment and withdrawal followed by ammonia exposure resulted in greater impairment in muscle signaling and protein synthesis than ammonia treatment in ethanol-naive myotubes. Of the three transcription factors that were bound to the RhBG promoter in response to ethanol and ammonia, DR1/NC2 indirectly regulated transcription of RhBG during ethanol and ammonia treatment. Direct effects of ethanol were synergistic with increased ammonia uptake in causing dysregulated skeletal muscle proteostasis and signaling perturbations with a more severe sarcopenic phenotype.


Assuntos
Amônia/metabolismo , Etanol/farmacologia , Músculo Esquelético/efeitos dos fármacos , Animais , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hiperamonemia/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Proteostase/efeitos dos fármacos , Transdução de Sinais , Ureia/metabolismo
8.
Cancer Res ; 78(17): 4865-4877, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012669

RESUMO

Increased expression of cytochrome P450 CYP2C9, together with elevated levels of its products epoxyeicosatrienoic acids (EET), is associated with aggressiveness in cancer. Cytochrome P450 variants CYP2C9*2 and CYP2C9*3 encode proteins with reduced enzymatic activity, and individuals carrying these variants metabolize drugs more slowly than individuals with wild-type CYP2C9*1, potentially affecting their response to drugs and altering their risk of disease. Although genetic differences in CYP2C9-dependent oxidation of arachidonic acid (AA) have been reported, the roles of CYP2C9*2 and CYP2C9*3 in EET biosynthesis and their relevance to disease are unknown. Here, we report that CYP2C9*2 and CYP2C9*3 metabolize AA less efficiently than CYP2C9*1 and that they play a role in the progression of non-small cell lung cancer (NSCLC) via impaired EET biosynthesis. When injected into mice, NSCLC cells expressing CYP2C9*2 and CYP2C9*3 produced lower levels of EETs and developed fewer, smaller, and less vascularized tumors than cells expressing CYP2C9*1. Moreover, endothelial cells expressing these two variants proliferated and migrated less than cells expressing CYP2C*1. Purified CYP2C9*2 and CYP2C9*3 exhibited attenuated catalytic efficiency in producing EETs, primarily due to impaired reduction of these two variants by NADPH-P450 reductase. Loss-of-function SNPs within CYP2C9*2 and CYP2C9*3 were associated with improved survival in female cases of NSCLC. Thus, decreased EET biosynthesis represents a novel mechanism whereby CYPC29*2 and CYP2C9*3 exert a direct protective role in NSCLC development.Significance: These findings report single nucleotide polymorphisms in the human CYP2C9 genes, CYP2C9*2 and CYP2C9*3, exert a direct protective role in tumorigenesis by impairing EET biosynthesis. Cancer Res; 78(17); 4865-77. ©2018 AACR.


Assuntos
Ácidos Araquidônicos/biossíntese , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Citocromo P-450 CYP2C9/genética , Animais , Ácido Araquidônico/genética , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética , Eicosanoides/biossíntese , Eicosanoides/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Diabetologia ; 60(6): 1066-1075, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352940

RESUMO

AIMS/HYPOTHESIS: Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans. METHODS: We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 -/- mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry. RESULTS: Cyp2c44 -/- mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg-1 min-1 in WT and Cyp2c44 -/- mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 -/- mice in vivo (gastrocnemius Rg 16.4 ± 2.0 vs 6.2 ± 1.7 µmol 100 g-1 min-1, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular KATP-induced relaxation was impaired in isolated Cyp2c44 -/- vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants. CONCLUSIONS/INTERPRETATION: CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Artérias Mesentéricas/metabolismo , Camundongos
10.
J Am Soc Nephrol ; 26(3): 597-610, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25071086

RESUMO

In the kidney, 20-hydroxyeicosatetraenoic acid (20-HETE) is a primary cytochrome P450 4 (Cyp4)-derived eicosanoid that enhances vasoconstriction of renal vessels and induces hypertension, renal tubular cell hypertrophy, and podocyte apoptosis. Hypertension and podocyte injury contribute to diabetic nephropathy and are strong predictors of disease progression. In this study, we defined the mechanisms whereby 20-HETE affects the progression of diabetic nephropathy. We used Cyp4a14KO male mice that exhibit androgen-sensitive hypertension due to increased Cyp4a12-mediated 20-HETE production. We show that, upon induction of diabetes type 1 via streptozotocin injection, Cyp4a14KO male mice developed worse renal disease than streptozotocin-treated wild-type mice, characterized by increased albuminuria, mesangial expansion, glomerular matrix deposition, and thickness of the glomerular basement membranes. Castration blunted androgen-mediated Cyp4a12 synthesis and 20-HETE production, normalized BP, and ameliorated renal damage in diabetic Cyp4a14KO mice. Notably, treatment with a 20-HETE antagonist or agents that normalized BP without affecting Cyp4a12 expression and 20-HETE biosynthesis also ameliorated diabetes-mediated renal damage and albuminuria in Cyp4a14KO male mice. Taken together, these results suggest that hypertension is the major contributor to 20-HETE-driven diabetes-mediated kidney injury.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Nefropatias Diabéticas/etiologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/complicações , Animais , Colágeno/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450 , Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/patologia , Hidralazina , Hidroclorotiazida , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Masculino , Camundongos Knockout , Orquiectomia , Sistema Renina-Angiotensina , Reserpina , Sódio/metabolismo
11.
Cancer Res ; 74(2): 621-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24302581

RESUMO

Non-small cell lung cancer (NSCLC) not amenable to surgical resection has a high mortality rate, due to the ineffectiveness and toxicity of chemotherapy. Thus, there remains an urgent need of efficacious drugs that can combat this disease. In this study, we show that targeting the formation of proangiogenic epoxyeicosatrienoic acids (EET) by the cytochrome P450 arachidonic acid epoxygenases (Cyp2c) represents a new and safe mechanism to treat NSCLC growth and progression. In the transgenic murine K-Ras model and human orthotopic models of NSCLC, we found that Cyp2c44 could be downregulated by activating the transcription factor PPARα with the ligands bezafibrate and Wyeth-14,643. Notably, both treatments reduced primary and metastatic NSCLC growth, tumor angiogenesis, endothelial Cyp2c44 expression, and circulating EET levels. These beneficial effects were independent of the time of administration, whether before or after the onset of primary NSCLC, and they persisted after drug withdrawal, suggesting the benefits were durable. Our findings suggest that strategies to downregulate Cyp2c expression and/or its enzymatic activity may provide a safer and effective strategy to treat NSCLC. Moreover, as bezafibrate is a well-tolerated clinically approved drug used for managing lipidemia, our findings provide an immediate cue for clinical studies to evaluate the utility of PPARα ligands as safe agents for the treatment of lung cancer in humans.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , PPAR alfa/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Bezafibrato/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Células Endoteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , Pirimidinas/farmacologia
12.
J Ophthalmol ; 2010: 274317, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20671953

RESUMO

Objective. Here we tested the role of Glo I in the prevention of advanced glycation end product (AGE) formation in transgenic mouse lenses. Methods. A transgenic animal line that expressed high levels of human Glo I in the lens was developed from the C57B6 mouse strain. The role of Glo I in the inhibition of MGO-AGE formation was tested in organ-cultured lenses. Results. Organ culture of Wt and Glo I lenses with 5 mM D, L-glyceraldehyde (GLD) enhanced MGO by 29-fold and 17-fold in Wt lenses and Glo I lenses, respectively. Argpyrimidine levels were 192 +/- 73 pmoles/mg protein, and hydroimidazolone levels were 22 +/- 0.7 units/mug protein in GLD-incubated Wt lenses. In Glo I lenses, formation of AGEs was significantly inhibited; the argpyrimidine levels were 82 +/- 18 pmoles/mg protein, and the HI levels were 2.6 +/- 2.3 units/mug protein. Incubation of Wt lens proteins with 5 mM ribose for 7 days resulted in the formation of pentosidine. However, the levels were substantially higher in Glo I lens proteins incubated with ribose. Conclusion. Our study provides direct evidence that Glo I activity plays an important role in the regulation of AGE synthesis in the lens; while Glo I activity blocks the formation of MGO-AGEs, it might promote the formation of sugar-derived AGEs.

13.
J Cell Biochem ; 110(2): 408-19, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20225272

RESUMO

The small heat shock protein Hsp27 is a molecular chaperone and an anti-apoptotic protein. Human Hsp27 has one cysteine residue at position 137. We investigated the role of this cysteine residue in the chaperone and anti-apoptotic functions of Hsp27 by mutating the cysteine residue to an alanine (Hsp27(C137A)) and comparing it to wild-type protein (Hsp27(WT)). Both proteins were multi-subunit oligomers, but subunits of Hsp27(WT) were disulfide-linked unlike those of Hsp27(C137A), which were monomeric. Hsp27(C137A) was indistinguishable from Hsp27(WT) with regard to its secondary structure, surface hydrophobicity, oligomeric size and chaperone function. S-thiolation and reductive methylation of the cysteine residue had no apparent effect on the chaperone function of Hsp27(WT). The anti-apoptotic function of Hsp27(C137A) and Hsp27(WT) was studied by overexpressing them in CHO cells. No difference in the caspase-3 or -9 activity was observed in staurosporine-treated cells. The rate of apoptosis between Hsp27(C137A) and Hsp27(WT) overexpressing cells was similar whether the cells were treated with staurosporine or etoposide. However, the mutant protein was less protective relative to the wild-type protein in preventing caspase-3 and caspase-9 activation and apoptosis induced by 1 mM H(2)O(2) in CHO and HeLa cells. These data demonstrate that in human Hsp27, disulfide formation by the lone cysteine does not affect its chaperone function and anti-apoptotic function against chemical toxicants. However, oxidation of the lone cysteine in Hsp27 might at least partially affect the anti-apoptotic function against oxidative stress.


Assuntos
Apoptose/fisiologia , Cisteína/fisiologia , Proteínas de Choque Térmico HSP27/fisiologia , Animais , Sequência de Bases , Células CHO , Caspase 3/metabolismo , Caspase 9/metabolismo , Dicroísmo Circular , Clonagem Molecular , Cricetinae , Cricetulus , Primers do DNA , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
14.
Biochim Biophys Acta ; 1802(4): 432-41, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20085807

RESUMO

AlphaA-crystallin is a molecular chaperone; it prevents aggregation of denaturing proteins. We have previously demonstrated that upon modification by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), alphaA-crystallin becomes a better chaperone. AlphaA-crystallin also assists in refolding of denatured proteins. Here, we have investigated the effect of mild modification of alphaA-crystallin by MGO (with 20-500 microM) on the chaperone function and its ability to refold denatured proteins. Under the conditions used, mildly modified protein contained mostly hydroimidazolone modifications. The modified protein exhibited an increase in chaperone function against thermal aggregation of beta(L)- and gamma-crystallins, citrate synthase (CS), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) and chemical aggregation of insulin. The ability of the protein to assist in refolding of chemically denatured beta(L)- and gamma-crystallins, MDH and LDH, and to prevent thermal inactivation of CS were unchanged after mild modification by MGO. Prior binding of catalytically inactive, thermally denatured MDH or the hydrophobic probe, 2-p-toluidonaphthalene-6-sulfonate (TNS) abolished the ability of alphaA-crystallin to assist in the refolding of denatured MDH. However, MGO modification of chaperone-null TNS-bound alphaA-crystallin resulted in partial regain of the chaperone function. Taken together, these results demonstrate that: 1) hydroimidazolone modifications are sufficient to enhance the chaperone function of alphaA-crystallin but such modifications do not change its ability to assist in refolding of denatured proteins, 2) the sites on the alphaA-crystallin responsible for the chaperone function and refolding are the same in the native alphaA-crystallin and 3) additional hydrophobic sites exposed upon MGO modification, which are responsible for the enhanced chaperone function, do not enhance alphaA-crystallin's ability to refold denatured proteins.


Assuntos
Cristalinas/química , Imidazóis/química , Chaperonas Moleculares/química , Dobramento de Proteína , Cristalinas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Desnaturação Proteica , Estrutura Terciária de Proteína/fisiologia
15.
J Biochem ; 144(1): 21-32, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18344542

RESUMO

alphaA-crystallin is abundant in the lens of the eye and acts as a molecular chaperone by preventing aggregation of denaturing proteins. We previously found that chemical modification of the guanidino group of selected arginine residues by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), makes human alphaA-crystallin a better chaperone. Here, we examined how the introduction of additional guanidino groups and modification by MGO influence the structure and chaperone function of alphaA-crystallin. alphaA-crystallin lysine residues were converted to homoarginine by guanidination with o-methylisourea (OMIU) and then modified with MGO. LC-ESI-mass spectrometry identified homoargpyrimidine and homohydroimidazolone adducts after OMIU and MGO treatment. Treatment with 0.25 M OMIU abolished most of the chaperone function. However, subsequent treatment with 1.0 mM MGO not only restored the chaperone function but increased it by approximately 40% and approximately 60% beyond that of unmodified alphaA-crystallin, as measured with citrate synthase and insulin aggregation assays, respectively. OMIU treatment reduced the surface hydrophobicity but after MGO treatment, it was approximately 39% higher than control. FRET analysis revealed that alphaA-crystallin subunit exchange rate was markedly retarded by OMIU modification, but was enhanced after MGO modification. These results indicate a pattern of loss and gain of chaperone function within the same protein that is associated with introduction of guanidino groups and their neutralization. These findings support our hypothesis that positively charged guanidino group on arginine residues keeps the chaperone function of alphaA-crystallin in check and that a metabolic alpha-dicarbonyl compound neutralizes this charge to restore and enhance chaperone function.


Assuntos
Cristalinas/química , Chaperonas Moleculares/química , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Cristalinas/metabolismo , Homoarginina/análogos & derivados , Homoarginina/análise , Homoarginina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/análise , Imidazóis/química , Espectrometria de Massas , Compostos de Metilureia/química , Chaperonas Moleculares/metabolismo , Ornitina/análogos & derivados , Ornitina/análise , Conformação Proteica , Subunidades Proteicas/química , Pirimidinas/análise , Pirimidinas/química , Aldeído Pirúvico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...