Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 78(17): 4865-4877, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012669

RESUMO

Increased expression of cytochrome P450 CYP2C9, together with elevated levels of its products epoxyeicosatrienoic acids (EET), is associated with aggressiveness in cancer. Cytochrome P450 variants CYP2C9*2 and CYP2C9*3 encode proteins with reduced enzymatic activity, and individuals carrying these variants metabolize drugs more slowly than individuals with wild-type CYP2C9*1, potentially affecting their response to drugs and altering their risk of disease. Although genetic differences in CYP2C9-dependent oxidation of arachidonic acid (AA) have been reported, the roles of CYP2C9*2 and CYP2C9*3 in EET biosynthesis and their relevance to disease are unknown. Here, we report that CYP2C9*2 and CYP2C9*3 metabolize AA less efficiently than CYP2C9*1 and that they play a role in the progression of non-small cell lung cancer (NSCLC) via impaired EET biosynthesis. When injected into mice, NSCLC cells expressing CYP2C9*2 and CYP2C9*3 produced lower levels of EETs and developed fewer, smaller, and less vascularized tumors than cells expressing CYP2C9*1. Moreover, endothelial cells expressing these two variants proliferated and migrated less than cells expressing CYP2C*1. Purified CYP2C9*2 and CYP2C9*3 exhibited attenuated catalytic efficiency in producing EETs, primarily due to impaired reduction of these two variants by NADPH-P450 reductase. Loss-of-function SNPs within CYP2C9*2 and CYP2C9*3 were associated with improved survival in female cases of NSCLC. Thus, decreased EET biosynthesis represents a novel mechanism whereby CYPC29*2 and CYP2C9*3 exert a direct protective role in NSCLC development.Significance: These findings report single nucleotide polymorphisms in the human CYP2C9 genes, CYP2C9*2 and CYP2C9*3, exert a direct protective role in tumorigenesis by impairing EET biosynthesis. Cancer Res; 78(17); 4865-77. ©2018 AACR.


Assuntos
Ácidos Araquidônicos/biossíntese , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Citocromo P-450 CYP2C9/genética , Animais , Ácido Araquidônico/genética , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética , Eicosanoides/biossíntese , Eicosanoides/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Diabetologia ; 60(6): 1066-1075, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352940

RESUMO

AIMS/HYPOTHESIS: Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans. METHODS: We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 -/- mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry. RESULTS: Cyp2c44 -/- mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg-1 min-1 in WT and Cyp2c44 -/- mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 -/- mice in vivo (gastrocnemius Rg 16.4 ± 2.0 vs 6.2 ± 1.7 µmol 100 g-1 min-1, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular KATP-induced relaxation was impaired in isolated Cyp2c44 -/- vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants. CONCLUSIONS/INTERPRETATION: CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Artérias Mesentéricas/metabolismo , Camundongos
3.
J Am Soc Nephrol ; 26(3): 597-610, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25071086

RESUMO

In the kidney, 20-hydroxyeicosatetraenoic acid (20-HETE) is a primary cytochrome P450 4 (Cyp4)-derived eicosanoid that enhances vasoconstriction of renal vessels and induces hypertension, renal tubular cell hypertrophy, and podocyte apoptosis. Hypertension and podocyte injury contribute to diabetic nephropathy and are strong predictors of disease progression. In this study, we defined the mechanisms whereby 20-HETE affects the progression of diabetic nephropathy. We used Cyp4a14KO male mice that exhibit androgen-sensitive hypertension due to increased Cyp4a12-mediated 20-HETE production. We show that, upon induction of diabetes type 1 via streptozotocin injection, Cyp4a14KO male mice developed worse renal disease than streptozotocin-treated wild-type mice, characterized by increased albuminuria, mesangial expansion, glomerular matrix deposition, and thickness of the glomerular basement membranes. Castration blunted androgen-mediated Cyp4a12 synthesis and 20-HETE production, normalized BP, and ameliorated renal damage in diabetic Cyp4a14KO mice. Notably, treatment with a 20-HETE antagonist or agents that normalized BP without affecting Cyp4a12 expression and 20-HETE biosynthesis also ameliorated diabetes-mediated renal damage and albuminuria in Cyp4a14KO male mice. Taken together, these results suggest that hypertension is the major contributor to 20-HETE-driven diabetes-mediated kidney injury.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Nefropatias Diabéticas/etiologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/complicações , Animais , Colágeno/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450 , Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/patologia , Hidralazina , Hidroclorotiazida , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Masculino , Camundongos Knockout , Orquiectomia , Sistema Renina-Angiotensina , Reserpina , Sódio/metabolismo
4.
J Ophthalmol ; 2010: 274317, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20671953

RESUMO

Objective. Here we tested the role of Glo I in the prevention of advanced glycation end product (AGE) formation in transgenic mouse lenses. Methods. A transgenic animal line that expressed high levels of human Glo I in the lens was developed from the C57B6 mouse strain. The role of Glo I in the inhibition of MGO-AGE formation was tested in organ-cultured lenses. Results. Organ culture of Wt and Glo I lenses with 5 mM D, L-glyceraldehyde (GLD) enhanced MGO by 29-fold and 17-fold in Wt lenses and Glo I lenses, respectively. Argpyrimidine levels were 192 +/- 73 pmoles/mg protein, and hydroimidazolone levels were 22 +/- 0.7 units/mug protein in GLD-incubated Wt lenses. In Glo I lenses, formation of AGEs was significantly inhibited; the argpyrimidine levels were 82 +/- 18 pmoles/mg protein, and the HI levels were 2.6 +/- 2.3 units/mug protein. Incubation of Wt lens proteins with 5 mM ribose for 7 days resulted in the formation of pentosidine. However, the levels were substantially higher in Glo I lens proteins incubated with ribose. Conclusion. Our study provides direct evidence that Glo I activity plays an important role in the regulation of AGE synthesis in the lens; while Glo I activity blocks the formation of MGO-AGEs, it might promote the formation of sugar-derived AGEs.

5.
Biochim Biophys Acta ; 1802(4): 432-41, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20085807

RESUMO

AlphaA-crystallin is a molecular chaperone; it prevents aggregation of denaturing proteins. We have previously demonstrated that upon modification by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), alphaA-crystallin becomes a better chaperone. AlphaA-crystallin also assists in refolding of denatured proteins. Here, we have investigated the effect of mild modification of alphaA-crystallin by MGO (with 20-500 microM) on the chaperone function and its ability to refold denatured proteins. Under the conditions used, mildly modified protein contained mostly hydroimidazolone modifications. The modified protein exhibited an increase in chaperone function against thermal aggregation of beta(L)- and gamma-crystallins, citrate synthase (CS), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) and chemical aggregation of insulin. The ability of the protein to assist in refolding of chemically denatured beta(L)- and gamma-crystallins, MDH and LDH, and to prevent thermal inactivation of CS were unchanged after mild modification by MGO. Prior binding of catalytically inactive, thermally denatured MDH or the hydrophobic probe, 2-p-toluidonaphthalene-6-sulfonate (TNS) abolished the ability of alphaA-crystallin to assist in the refolding of denatured MDH. However, MGO modification of chaperone-null TNS-bound alphaA-crystallin resulted in partial regain of the chaperone function. Taken together, these results demonstrate that: 1) hydroimidazolone modifications are sufficient to enhance the chaperone function of alphaA-crystallin but such modifications do not change its ability to assist in refolding of denatured proteins, 2) the sites on the alphaA-crystallin responsible for the chaperone function and refolding are the same in the native alphaA-crystallin and 3) additional hydrophobic sites exposed upon MGO modification, which are responsible for the enhanced chaperone function, do not enhance alphaA-crystallin's ability to refold denatured proteins.


Assuntos
Cristalinas/química , Imidazóis/química , Chaperonas Moleculares/química , Dobramento de Proteína , Cristalinas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Desnaturação Proteica , Estrutura Terciária de Proteína/fisiologia
6.
J Biochem ; 144(1): 21-32, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18344542

RESUMO

alphaA-crystallin is abundant in the lens of the eye and acts as a molecular chaperone by preventing aggregation of denaturing proteins. We previously found that chemical modification of the guanidino group of selected arginine residues by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), makes human alphaA-crystallin a better chaperone. Here, we examined how the introduction of additional guanidino groups and modification by MGO influence the structure and chaperone function of alphaA-crystallin. alphaA-crystallin lysine residues were converted to homoarginine by guanidination with o-methylisourea (OMIU) and then modified with MGO. LC-ESI-mass spectrometry identified homoargpyrimidine and homohydroimidazolone adducts after OMIU and MGO treatment. Treatment with 0.25 M OMIU abolished most of the chaperone function. However, subsequent treatment with 1.0 mM MGO not only restored the chaperone function but increased it by approximately 40% and approximately 60% beyond that of unmodified alphaA-crystallin, as measured with citrate synthase and insulin aggregation assays, respectively. OMIU treatment reduced the surface hydrophobicity but after MGO treatment, it was approximately 39% higher than control. FRET analysis revealed that alphaA-crystallin subunit exchange rate was markedly retarded by OMIU modification, but was enhanced after MGO modification. These results indicate a pattern of loss and gain of chaperone function within the same protein that is associated with introduction of guanidino groups and their neutralization. These findings support our hypothesis that positively charged guanidino group on arginine residues keeps the chaperone function of alphaA-crystallin in check and that a metabolic alpha-dicarbonyl compound neutralizes this charge to restore and enhance chaperone function.


Assuntos
Cristalinas/química , Chaperonas Moleculares/química , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Cristalinas/metabolismo , Homoarginina/análogos & derivados , Homoarginina/análise , Homoarginina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/análise , Imidazóis/química , Espectrometria de Massas , Compostos de Metilureia/química , Chaperonas Moleculares/metabolismo , Ornitina/análogos & derivados , Ornitina/análise , Conformação Proteica , Subunidades Proteicas/química , Pirimidinas/análise , Pirimidinas/química , Aldeído Pirúvico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...