Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2(5): 1944-1955, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35030683

RESUMO

We report a novel phenazine-embedded fluorescent probe (2-[2-(pyridin-2-ylmethoxy)-phenyl]-1H-imidazo[4,5-b]phenazine, PIP), which upon complexation with Cu(II)-ion-forming [(PIP)CuII(Cl)] becomes nonfluorescent but regenerates fluorescence in a selective reaction with NO and HNO over different biologically reactive oxygen and nitrogen (ROS/RNS) species under physiological conditions. The fluorescence intensity of PIP gets quenched due to the formation of the [(PIP)CuII(Cl)] complex, which regenerates the fluorescence by 67 and 84% upon reaction either with NO or HNO, respectively, in the presence of other biological reducing species. Details of photophysical properties of PIP, [(PIP)CuII(Cl)], and [(PIP)CuI] have been studied by density functional theory (DFT) calculations. The recognition efficacy of [(PIP)CuII(Cl)] for exogenous and endogenous NO and HNO in A549 and RAW 264.7 cells with the flow cytometry application has also been demonstrated successfully.

2.
Dalton Trans ; 42(2): 567-76, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23076623

RESUMO

Rate constants for the reactions of cyanamide anion N≡C-NH(-) with Fischer carbene complexes of the type (CO)(5)M=C(XR)C(6)H(4)Z with M = Cr and W, XR = SMe and OMe, Z = NMe(2), OMe, Me, H, F, Cl and CF(3) in 50% MeCN-50% water (v/v) at 25 °C are reported. N≡C-NH(-) shows a much higher reactivity towards these carbene complexes than OH(-), primary aliphatic amines (e.g. n-butylamine) or secondary alicyclic amines (e.g. piperidine) but is slightly less reactive than thiolate ions (e.g. HOCH(2)CH(2)S(-)). The alkoxy carbene complexes were found to react faster than the thiomethyl derivatives, consistent with previous findings for alkoxide ion, CH(CN)(2)(-), OH(-), amine and thiolate ion nucleophiles. Hammett ρ values are 3.00 ± 0.08 (k(1)) and 2.98 ± 0.08 (k(2)) for Cr-OMe-Z-N≡C-NH(-) reactions and 0.94 ± 0.05 (k(1)) for Cr-SMe-Z-N≡C-NH(-) reactions. The ρ values for the reaction of Cr-OMe-Z and Cr-SMe-Z with CH(CN)(2)(-) and DABCO (1,4-diazabicyclo[2.2.2]octane) (in 50% MeCN-50% H(2)O (v/v) are comparable to the present reactions. The much higher reactivity and hence much higher ρ value for methoxy carbene complexes over the corresponding thiomethyl derivatives is best explained by considering the substituent effects not only on the transition state (TS) but also on the reactant, and consistent with the previously observed pattern. Higher k(1)(W)/k(1)(Cr) ratios for (thiomethyl)carbene complexes as well as methoxy and ethoxycarbene complexes are related to the intrinsic rate constant which is higher for tungsten-carbene complexes than the corresponding Cr ones resulting in an enhanced ratio. This can also be explained by considering the electronegativity of Cr and W, which is higher for the latter; as a result the negative charge on the central metal atom is more localized in case of W causing destabilization of the TS and hence higher reactivity.

3.
Phys Chem Chem Phys ; 13(35): 15845-53, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21818495

RESUMO

A combination of a single crystal X-ray diffraction study and density functional theory calculations has been applied to a bidentate Schiff base compound to elucidate different cooperative non-covalent interactions involved in the stabilization of the keto form over the enol one in the solid state. The single crystal X-ray structure reveals a remarkable supramolecular assembly of the keto form through a cyclic hydrogen bonded dimeric motif. The most interesting feature in the supramolecular assembly is the formation of a 'dimer of dimer' motif by π···π, CH···π and N···O/O···O interactions in which the π···π interaction involving the aromatic phenyl ring and the intramolecularly hydrogen bonded pseudo-aromatic ring of the keto form lying just above or below the phenyl ring of the other dimer seems to be unprecedented. The optimized geometry of the hydrogen bonded dimeric motif of the keto form of the organic molecule has been obtained by DFT calculations and agrees very well with that found within the crystalline state. The X-ray crystallographic geometry of the 'dimer of dimer' has also been computed, which shows that in the HOMO, the π electrons are localized in the phenyl rings away from each other, while in the LUMO, there is a strong π-π interaction between the phenyl ring of one dimer with the pseudo-aromatic ring of another dimer with an energy estimated to be 7.95 kJ mol(-1). Therefore, on HOMO → LUMO excitation there is localization of π electrons in the central part of the complex moiety which plays a stabilizing role of the dimer of dimer motif in the solid state.


Assuntos
Hidrocarbonetos Aromáticos/química , Bases de Schiff/química , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Teoria Quântica
4.
J Org Chem ; 64(22): 8323-8333, 1999 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-11674755

RESUMO

Polycytidylate, poly(C), serves as a scaffold or template to direct and catalyze the synthesis of long oligoguanylates from guanosine 5'-phosphate 2-methylimidazolide, 2-MeImpG. In the absence of poly(C), small amounts of three isomeric dimers, i.e., the 2'-5'-, the 3'-5'-, and the pyrophosphate-linked, are formed slowly. In the presence of poly(C) oligomers that are primarily 3'-5'-linked are formed quickly and in high yield. Product analysis suggests that the oligomers are elongation products of the 3'-5'-linked dimer, abbreviated D. Assuming that D is formed slowly from two molecules of 2-MeImpG (Scheme 1) and elongates relatively fast, the initial rate of dimerization, d[D]/dt in M h(-1), was determined using two independent methods. The first method is based on the approximation that at the onset of the reaction the substrate is consumed only via hydrolysis and dimerization, and thus elongation can be neglected. The second, more accurate, method exploits the assertion that every oligomer was once a 3'-5'-linked dimer. Hence the concentration of D was obtained indirectly from the concentration of the oligomer products. These two methods gave comparable results. Experiments were run in aqueous solution in the presence of 1.0 M NaCl, 0.2 M MgCl(2) at pH 7.9 +/- 0.1 and 23 degrees C. Controls were run in the absence of poly(C) and in the presence of other polynucleotides. The kinetics were determined as a function of both monomer and polymer concentration the latter expressed in C equivalents. The kinetic data obtained in the presence of poly(C) confirmed an earlier conclusion regarding the remarkable effect of poly(C) on the formation of the 3'-5'-linked diguanylate. Initial dimerization rates were quantitatively correlated using a simple template-directed (TD) model that presumes cooperative binding (two association constants) of 2-MeImpG on poly(C) and reaction between adjacent template-bound molecules. The model allows for the estimation of the association constants and the intrinsic rate constant of dimerization, k(2). Insights into the detailed mechanism are also gained from this analysis. The fact that the proposed model can successfully correlate kinetic data that vary by more than 5000-fold between the slowest and the fastest reaction adds confidence and suggests the suitability of this model for describing TD reactions in general. It is anticipated that similar analysis of other known TD reactions may lead to clues that will facilitate the design of more efficient polynucleotide-synthesizing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...