Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Clim Dyn ; 60(3-4): 1061-1078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35754938

RESUMO

Compound warm-dry spells over land, which is expected to occur more frequently and expected to cover a much larger spatial extent in a warming climate, result from the simultaneous or successive occurrence of extreme heatwaves, low precipitation, and synoptic conditions, e.g., low surface wind speeds. While changing patterns of weather and climate extremes cannot be ameliorated, effective mitigation requires an understanding of the multivariate nature of interacting drivers that influence the occurrence frequency and predictability of these extremes. However, risk assessments are often focused on univariate statistics, incorporating either extreme temperature or low precipitation; or at the most bivariate statistics considering concurrence of temperature versus precipitation, without accounting for synoptic conditions influencing their joint dependency. Based on station-based daily meteorological records from 23 urban and peri-urban locations of India, covering the 1970-2018 period, this study identifies four distinct regions that show temporal clustering of the timing of heatwaves. Further, combining joint probability distributions of interacting drivers, this analysis explored compound warm-dry potentials that result from the co-occurrence of warmer temperature, scarcer precipitation, and synoptic wind patterns. The results reveal 50-year severe heat stress solely based on the temperature at each location tends to be more frequent and is expected to become 5 to 17-year compound warm-dry events considering interdependence between attributes. Notably, considering dependence among drivers, a median 6-fold amplification (ranging from 3 to 10-fold) in compound warm-dry spell frequency is apparent relative to the expected annual number of a local (univariate) 50-year severe heatwave episode, indicating warming-induced desiccation is already underway over most of the urbanized areas of the country. Supplementary information: The online version contains supplementary material available at 10.1007/s00382-022-06324-y.

2.
Sci Rep ; 12(1): 8014, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570220

RESUMO

Most land surface system models and observational assessments ignore detailed soil characteristics while describing the drought attributes such as growth, duration, recovery, and the termination rate of the event. With the national-scale digital soil maps available for India, we assessed the climate-catchment-soil nexus using daily observed streamflow records from 98 sites in tropical rain-dominated catchments of peninsular India (8-25° N, 72-86° E). Results indicated that climate-catchment-soil properties may control hydrological drought attributes to the tune of 14-70%. While terrain features are dominant drivers for drought growth, contributing around 50% variability, soil attributes contribute ~ 71.5% variability in drought duration. Finally, soil and climatic factors together control the resilience and termination rate. The most relevant climate characteristics are potential evapotranspiration, soil moisture, rainfall, and temperature; temperature and soil moisture are dominant controls for streamflow drought resilience. Among different soil properties, soil organic carbon (SOC) stock could resist drought propagation, despite low-carbon soils across the Indian subcontinent. The findings highlight the need for accounting feedback among climate, soil, and topographical properties in catchment-scale drought propagations.


Assuntos
Secas , Solo , Carbono , Hidrologia , Chuva
3.
Sci Rep ; 9(1): 13165, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511605

RESUMO

Compound flooding, such as the co-occurrence of fluvial floods and extreme coastal water levels (CWL), may lead to significant impacts in densely-populated Low Elevation Coastal Zones. They may overstrain disaster management owing to the co-occurrence of inundation from rivers and the sea. Recent studies are limited by analyzing joint dependence between river discharge and either CWL or storm surges, and little is known about return levels of compound flooding, accounting for the covariance between drivers. Here, we assess the compound flood severity and identify hotspots for northwestern Europe during 1970-2014, using a newly developed Compound Hazard Ratio (CHR) that compares the severity of compound flooding associated with extreme CWL with the unconditional T-year fluvial peak discharge. We show that extreme CWL and stronger storms greatly amplify fluvial flood hazards. Our results, based on frequency analyses of observational records during 2013/2014's winter storm Xaver, reveal that the river discharge of the 50-year compound flood is up to 70% larger, conditioned on the occurrence of extreme CWL, than that of the at-site peak discharge. For this event, nearly half of the stream gauges show increased flood hazards, demonstrating the importance of including the compounding effect of extreme CWL in river flood risk management.

4.
Sci Rep ; 8(1): 6426, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29666435

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Sci Rep ; 7(1): 11983, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931880

RESUMO

Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...