Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Microb Sci ; 6: 100228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450031

RESUMO

In order to comply with the stringent discharge guidelines issued by governmental organizations to protect the ecosystem, the substantial amounts of effluent and sturdy wastes produced by the beer brewing process need to be discarded or handled in the most affordable and secure manner. Huge quantities of waste material released with each brew bestow a significant opportunity for the brewing sector to move towards sustainability. The concept of circular economy and the development of technological advancements in brewery waste processing have spurred interest to valorize brewery waste for implementation in various sectors of medical and food science, industrial science, and many more intriguing fields. Biotechnological methods for valorizing brewery wastes are showing a path towards green chemistry and are feasible and advantageous to environment. The study unfolds most recent prospectus for brewery waste usage and discusses major challenges with brewery waste treatment and valorization and offers suggestions for further work.

2.
Tissue Eng Part C Methods ; 19(4): 299-306, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22992065

RESUMO

A noninvasive quality monitoring of tissue-engineered constructs is a required component of any successful tissue-engineering technique. During a 2-week production period, ex vivo produced oral mucosa-equivalent constructs (EVPOMEs) may encounter adverse culturing conditions that might compromise their quality and render them ineffective. We demonstrate the application of near-infrared Raman spectroscopy to in vitro monitoring of EVPOMEs during their manufacturing process, with the ultimate goal of applying this technology in situ to monitor the grafted EVPOMEs. We identify Raman spectroscopic failure indicators for less-than optimal EVPOMEs that are stressed by higher temperature and exposure to higher than normal concentration of calcium ions. Raman spectra of EVPOMEs exposed to thermal and calcium stress showed correlation of the band height ratio of CH(2) deformation to phenylalanine ring breathing modes, providing a Raman metric to distinguish between viable and nonviable constructs. We compared these results to histology and glucose consumption measurements, demonstrating that Raman spectroscopy is more sensitive and specific to changes in proteins' secondary structure not visible by H&E histology. We also exposed the EVPOMEs to rapamycin, a cell growth inhibitor and cell proliferation capacity preserver, and distinguished between EVPOMEs pretreated with 2 nM rapamycin and controls, using the ratio of the Amide III envelope to the phenylalanine band as an indicator.


Assuntos
Mucosa Bucal , Análise Espectral Raman/métodos , Engenharia Tecidual , Cálcio/metabolismo , Glucose/metabolismo , Humanos , Sirolimo/farmacologia
3.
Tissue Eng Part C Methods ; 19(5): 345-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23072525

RESUMO

This study examines the use of high-resolution ultrasound to monitor changes in the morphology and nonlinear elastic properties of engineered oral mucosal tissues under normal and thermally stressed culture conditions. Nonlinear elastic properties were determined by first developing strain maps from acoustic ultrasound, followed by fitting of nonlinear stress-strain data to a 1-term Ogden model. Testing examined a clinically developed ex vivo produced oral mucosa equivalent (EVPOME). As seeded cells proliferate on an EVPOME surface, they produce a keratinized protective upper layer that fills in and smoothens out surface irregularities. These transformations can also alter the nonlinear stress/strain parameters as EVPOME cells differentiate. This EVPOME behavior is similar to those of natural oral mucosal tissues and in contrast to an unseeded scaffold. If ultrasonic monitoring could be developed, then tissue cultivation could be adjusted in-process to account for biological variations in their development of the stratified cellular layer. In addition to ultrasonic testing, an in-house-built compression system capable of accurate measurements on small (∼1.0-1.5 cm(2)) tissue samples is presented. Results showed a near 2.5-fold difference in the stiffness properties between the unstressed EVPOME and the noncell-seeded acellular scaffold (AlloDerm(®)). There were also 4×greater differences in root mean square values of the thickness in the unseeded AlloDerm compared to the mature unstressed EVPOME; this is a strong indicator for quantifying surface roughness.


Assuntos
Elasticidade , Microscopia Acústica/métodos , Mucosa Bucal/fisiologia , Dinâmica não Linear , Estresse Mecânico , Temperatura , Engenharia Tecidual/métodos , Colágeno/farmacologia , Elasticidade/efeitos dos fármacos , Humanos , Mucosa Bucal/efeitos dos fármacos , Propriedades de Superfície
4.
J Phys Chem A ; 115(26): 7473-83, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21619013

RESUMO

The infrared spectra of gaseous and variable-temperature liquid xenon solutions of pyrrolidine have been recorded. The enthalpy difference has been determined to be 109 ± 11 cm(-1) (1.30 ± 0.13 kJ mol(-1)) with the envelope-equatorial conformer more stable than the twist form with 37 ± 3% present at ambient temperature. Ab initio calculations utilizing various basis sets up to MP2(full)/aug-cc-pVTZ have been used to predict the conformational stabilities, energy at the equatorial-axial saddle point, and barriers to planarity. From previously reported microwave rotational constants along with MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained for both conformers. Heavy atom distances (Å) of equatorial[twist] conformer are as follows: N(1)-C(2) = 1.469(3)[1.476(3)], N(1)-C(3) = 1.469(3)[1.479(3)], C(2)-C(4) = 1.541(3)[1.556(3)], C(3)-C(5) = 1.541(3)[1.544(3)], C(4)-C(5) = 1.556(3)[1.543(3)]; and angles (deg)∠N(1)C(2)C(4) = 102.5(5)[107.6(5)], ∠N(1)C(3)C(5) = 102.5(5)[105.4(5)], ∠C(2)C(4)C(5) = 104.3(5)[104.6(5)], ∠C(3)C(5)C(4) = 104.3(5)[103.7(5)], ∠C(2)N(1)C(3) = 104.1(5)[103.9(5)], τC(2)C(4)C(5)C(3) = 0.0(5)[13.5(5)]. A complete vibrational assignment is proposed for both conformers.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 79(4): 831-40, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21030298

RESUMO

Variable temperature (-55 to -100°C) studies of the infrared spectra (3500-400 cm(-1)) of fluorocyclobutane, c-C(4)H(7)F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496±40 cm(-1) (5.93±0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8±1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732±47 cm(-1) (9.04±0.44 kJ/mol) and the average value of 602±20 cm(-1) from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (Å) C-F=1.383(3) [1.407(3)], C(α)-C(ß)=1.543(3) [1.546(3)], C(ß)-C(γ)=1.554(3) [1.554(3)] and angles (°) ∠C(α)C(ß)C(γ)=85.0(5) [89.2(5)], ∠C(ß)C(α)C(ß)=89.3(5) [89.2(5)], ∠F-(C(ß)C(α)C(ß))=117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.


Assuntos
Ciclobutanos/química , Conformação Molecular , Vibração , Gases/química , Modelos Químicos , Rotação , Espectrofotometria Infravermelho , Termodinâmica
6.
Artigo em Inglês | MEDLINE | ID: mdl-22254305

RESUMO

Stress-strain curves of oral mucosal tissues were measured using direct mechanical testing. Measurements were conducted on both natural oral mucosal tissues and engineered devices, specifically a clinically developed ex vivo produced oral mucosal equivalent (EVPOME). As seeded cells proliferate on EVPOME devices, they produce a keratinized protective upper layer which fills in surface irregularities. These transformations can further alter stress-strain parameters as cells in EVPOME differentiate, more similar to natural oral mucosal tissues in contrast to an unseeded scaffold. In addition to tissue devices grown under normal conditions (37 °C), EVPOMEs were also produced at 43 °C. These thermally stressed specimens model possible failure mechanisms. Results from a mechanical deformation system capable of accurate measurements on small (approximately 1.0-1.5 cm(2)) cylindrical tissue samples are presented. Deformations are produced by lowering a circular piston, with a radius smaller than the sample radius, onto the center of the sample. Resulting force is measured with a precision electronic balance. Cultured EVPOME was less stiff than AlloDerm®, but similar to native porcine buccal tissue. Porcine skin and porcine palate tissues were even less stiff. Thermally stressed EVPOME was less stiff than normally cultured EVPOME as expected because stressed keratin cells were damaged reducing the structural integrity of the tissue.


Assuntos
Modelos Biológicos , Mucosa/fisiologia , Fenômenos Fisiológicos da Pele , Pele/citologia , Engenharia Tecidual/métodos , Animais , Simulação por Computador , Módulo de Elasticidade , Mucosa/citologia , Dinâmica não Linear , Estresse Mecânico , Suínos , Resistência à Tração
7.
J Dent ; 38(11): 908-15, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20709136

RESUMO

OBJECTIVES: Contemporary methods of dentin bonding could create hybrid layers (HLs) containing voids and exposed, demineralised collagen fibres. Proanthocyanidins (PA) have been shown to cross-link and strengthen demineralised dentin collagen, but their effects on collagen degradation within the HL have not been widely studied. The purpose of this study was to compare the morphological differences of HLs created by BisGMA/HEMA model adhesives with and without the addition of grape seed extract PA under conditions of enzymatic collagen degradation. METHODS: Model adhesives formulated with and without 5% PA were bonded to the acid etched dentin. 5-µm-thick sections cut from the bonded specimens were stained with Goldner's trichrome. The specimens were then exposed to 0.1% collagenase solution for 0, 1, or 6 days. Following collagenase treatment, the specimens were analysed with SEM/TEM. RESULTS: Staining did not reveal a difference in the HLs created with the two adhesives. SEM showed the presence of intact collagen fibrils in all collagenase treatment conditions for specimens bonded with adhesive containing PA. These integral collagen fibrils were not observed in the specimens bonded with adhesive without PA after the same collagenase treatment. TEM confirmed that the specimens containing PA still showed normal collagen fibril organisation and dimensions after treatment with collagenase solution. In contrast, disorganised collagen fibrils in the interfacial zone lacked the typical cross-banding of normal collagen after collagenase treatment for specimens without PA. CONCLUSIONS: The presence of grape seed extract PA in dental adhesives may inhibit the biodegradation of unprotected collagen fibrils within the HL.


Assuntos
Colágeno/ultraestrutura , Reagentes de Ligações Cruzadas/química , Adesivos Dentinários/química , Extrato de Sementes de Uva/química , Proantocianidinas/química , Vitis , Condicionamento Ácido do Dente/métodos , Compostos Azo , Bis-Fenol A-Glicidil Metacrilato/química , Clostridium histolyticum/enzimologia , Colágeno/efeitos dos fármacos , Corantes , Colagem Dentária , Dentina/ultraestrutura , Amarelo de Eosina-(YS) , Humanos , Teste de Materiais , Metacrilatos/química , Verde de Metila , Colagenase Microbiana/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Organofosfonatos/química , Ácidos Fosfóricos/química , Propriedades de Superfície , Fatores de Tempo
8.
J Phys Chem A ; 113(35): 9675-83, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19673493

RESUMO

The infrared spectra (3200-50 cm(-1)) of the gas and solid and the Raman spectrum (3200-30 cm(-1)) of liquid and solid fluorocyclopentane, c-C5H9F, have been recorded. Additionally the infrared spectra (3200-400 cm(-1)) of liquid xenon solutions have been recorded at -65 and -95 degrees C. In all of the physical states, only the twisted C(1) conformer was detected. Ab initio calculations utilizing various basis sets up to MP2(full)/6-311+G(2df,2pd) with and without diffuse functions have been used to predict the conformational stabilities. These calculations predict only the twisted C1 conformer as the stable form. The two envelope (C(s) symmetry) forms with axial and equatorial structures were predicted to be first order saddle points with average higher energies of 75 +/- 33 and 683 +/- 44 cm(-1), respectively, from the C1 conformer but lower energies of 2442 and 1812 cm(-1), respectively, than the planar form by MP2 calculations. Similar values were obtained from the corresponding density functional theory calculations by the B3LYP method. A complete vibrational assignment is given for the twisted (C1) conformer which is supported by normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations. The adjusted r0 structural parameters have been obtained by systematically fitting the MP2(full)/6-311+G(d,p) predicted values with the rotational constants obtained from a microwave study. The determined heavy atom r0 distances in A are (C1C2) = 1.531(3), (C1C3) = 1.519(3), (C2C4) = 1.553(3), (C3C5) = 1.533(3), (C4C5) = 1.540(3), and (C1F6) = 1.411(3) and the angles in degrees are angle C3C1C2 = 105.5(5), angle C1C2C4 = 106.2(5), angle C1C3C5 = 102.9(5), angle F6C1C2 = 108.9(5), and angle F6C1C3 = 107.6(5) with a dihedral angle angle C2C4C5C3 = 25.3(3). These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(4): 1379-89, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18602334

RESUMO

Variable temperature (-55 to -100 degrees C) studies of the infrared spectra (4000-400 cm(-1)) of cyclobutanol, c-C4H7OH dissolved in liquid xenon have been carried out. The infrared spectrum (4000-100 cm(-1)) of the gas has also been recorded. From these data two of the four possible stable conformers have been confidently identified and their order of stabilities has been experimentally determined where the first indicator is for the position of attachment of the hydroxyl group on the bent cyclobutyl ring (Eq=equatorial or Ax=axial) and the second one (t=trans, g=gauche) is the relative position of the hydroxyl rotor, i.e. rotation around the ring C-O bond. The enthalpy difference between the most stable Eq-t conformer and the second most stable rotamer, Eq-g, has been determined to be 200+/-50 cm(-1) (2.39+/-0.60 kJ/mol). This experimentally determined order is consistent with the order of stability predicted by ab initio calculations Eq-t>Eq-g>Ax-g>Ax-t. Evidence was obtained for the third conformer Ax-g which is predicted by ab initio calculations to be less stable by more than 650cm(-1) than the Eq-t form. The percentage of each conformer at ambient temperature is estimated to be Eq-t (50%), Eq-g (47%) and Ax-g (3%). The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for all of the conformers from MP2(full)/6-31G(d) ab initio calculations. The optimized geometries and conformational stabilities have been obtained from ab initio calculations utilizing several different basis sets up to MP2(full)/aug-cc-pVTZ and from density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants for the Eq-t conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the Eq-t conformer are: the distances C1-C4=1.547(5) angstroms, C4-C6=1.552(5)angstroms, C-O=1.416(5) angstroms and angles angleC6C4C1=86.6(5) degrees , angleC4C1C5=88.9(5) degrees and angleC6C5C1C4=22.8(5) degrees . The results are discussed and compared to the corresponding properties of some similar molecules.


Assuntos
Butanóis/química , Ciclobutanos/química , Xenônio/química , Técnicas de Química Analítica/métodos , Elétrons , Gases , Temperatura Alta , Modelos Químicos , Conformação Molecular , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...