Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15690, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977801

RESUMO

Cd(II) is a potentially toxic heavy metal having carcinogenic activity. It is becoming widespread in the soil and groundwater by various natural and anthropological activities. This is inviting its immediate removal. The present study is aimed at developing a Cd(II) resistant strain isolated from contaminated water body and testing its potency in biological remediation of Cd(II) from aqueous environment. The developed resistant strain was characterized by SEM, FESEM, TEM, EDAX, FT-IR, Raman Spectral, XRD and XPS analysis. The results depict considerable morphological changes had taken place on the cell surface and interaction of Cd(II) with the surface exposed functional groups along with intracellular accumulation. Molecular contribution of critical cell wall component has been evaluated. The developed resistant strain had undergone Cd(II) biosorption study by employing adsorption isotherms and kinetic modeling. Langmuir model best fitted the Cd(II) biosorption data compared to the Freundlich one. Cd(II) biosorption by the strain followed a pseudo second order kinetics. The physical parameters affecting biosorption were also optimized by employing response surface methodology using central composite design. The results depict remarkable removal capacity 75.682 ± 0.002% of Cd(II) by the developed resistant strain from contaminated aqueous medium using 500 ppm of Cd(II). Quantitatively, biosorption for Cd(II) by the newly developed resistant strain has been increased significantly (p < 0.0001) from 4.36 ppm (non-resistant strain) to 378.41 ppm (resistant strain). It has also shown quite effective desorption capacity 87.527 ± 0.023% at the first desorption cycle and can be reused effectively as a successful Cd(II) desorbent up to five cycles. The results suggest that the strain has considerable withstanding capacity of Cd(II) stress and can be employed effectively in the Cd(II) bioremediation from wastewater.


Assuntos
Biodegradação Ambiental , Cádmio , Candida tropicalis , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Cádmio/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Purificação da Água/métodos , Poluentes Químicos da Água/metabolismo , Candida tropicalis/metabolismo , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Sci Rep ; 13(1): 12034, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491499

RESUMO

Cadmium is one of the most dreadful heavy metals and is becoming a major toxicant in ground water with increasing concentration above the WHO Guidelines in drinking water (0.003 mg/L). The potential sources of cadmium include sewage sludge, phosphate fertilizers and ingredients like Ni-Cd batteries, pigments, plating and plastics. Cadmium levels are increased in water owing to the use and disposal of cadmium containing ingredients. Water draining from a landfill may contain higher cadmium levels. The authors have tried to evaluate the optimized nutritional conditions for the optimal growth and Cd(II) remediation capacity for a developed Cd(II) resistant yeast strain named Candida tropicalis XTA 1874 isolated from contaminated water-body in West Bengal. By analyzing the optimization conditions, a synthetic medium was developed and the composition has been given in the main text. The strain showed much better Cd(II) adsorption capacity under the optimized nutritional conditions (Mean removal = 88.077 ± 0.097%).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Candida tropicalis , Poluentes Químicos da Água/análise , Esgotos , Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética
3.
J Basic Clin Physiol Pharmacol ; 34(3): 249-261, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766742

RESUMO

Cadmium(II) is an omnipresent environmental toxicant emitted from various industrial sources and by anthropogenic sources such as smoking. Cadmium(II) enters our body through various sources including contaminated food and drinks and from active or passive smoking. It spares no organs in our body and the calamities it invites include primarily nephrotoxicity, osteotoxicity, teratogenicity, endocrine disruption, hepatotoxicity and carcinogenicity above all. It brings about a bolt from the blue in the cellular biochemistry by generating reactive oxygen species (ROS), disrupting the factors involved in the repair of DNA lesions and many other toxic nuisances otherwise by modulating the cell signalling machinery and acting as a potent carcinogen above all. In this review, we have tried to decipher some of the mechanisms played by cadmium(II) in exhibiting its toxic effects on various system of our body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...