Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865319

RESUMO

Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.


Assuntos
Proteínas de Bactérias , Hemaglutininas , Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Hemaglutininas/genética , Hemaglutininas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Deleção de Genes , Proteínas de Ligação a DNA/genética , Domínios Proteicos/genética , Microscopia de Força Atômica
2.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37533212

RESUMO

Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.


Assuntos
Bacillus , Fosforilação , Transdução de Sinais , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Tirosina , Proteínas de Bactérias/metabolismo
3.
PLoS Pathog ; 18(8): e1010729, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35913993

RESUMO

Reversible protein phosphorylation at serine/threonine residues is one of the most common protein modifications, widely observed in all kingdoms of life. The catalysts controlling this modification are specific serine/threonine kinases and phosphatases that modulate various cellular pathways ranging from growth to cellular death. Genome sequencing and various omics studies have led to the identification of numerous serine/threonine kinases and cognate phosphatases, yet the physiological relevance of many of these proteins remain enigmatic. In Bacillus anthracis, only one ser/thr phosphatase, PrpC, has been functionally characterized; it was reported to be non-essential for bacterial growth and survival. In the present study, we characterized another ser/thr phosphatase (PrpN) of B. anthracis by various structural and functional approaches. To examine its physiological relevance in B. anthracis, a null mutant strain of prpN was generated and shown to have defects in sporulation and reduced synthesis of toxins (PA and LF) and the toxin activator protein AtxA. We also identified CodY, a global transcriptional regulator, as a target of PrpN and ser/thr kinase PrkC. CodY phosphorylation strongly controlled its binding to the promoter region of atxA, as shown using phosphomimetic and phosphoablative mutants. In nutshell, the present study reports phosphorylation-mediated regulation of CodY activity in the context of anthrax toxin synthesis in B. anthracis by a previously uncharacterized ser/thr protein phosphatase-PrpN.


Assuntos
Bacillus anthracis , Animais , Bacillus anthracis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estágios do Ciclo de Vida , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Treonina/metabolismo
4.
Indian J Microbiol ; 61(2): 170-179, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33927458

RESUMO

Bacterial sporulation is a conserved process utilized by members of Bacillus genus and Clostridium in response to stress such as nutrient or temperature. Sporulation initiation is triggered by stress signals perceived by bacterial cell that leads to shutdown of metabolic pathways of bacterial cells. The mechanism of sporulation involves a complex network that is regulated at various checkpoints to form the viable bacterial spore. Engulfment is one such check point that drives the required cellular rearrangement necessary for the spore assembly and is mediated by bacterial proteolytic machinery that involves association of various Clp ATPases and ClpP protease. The present study highlights the importance of degradation of an anti-sigma factor F, SpoIIAB by ClpCP proteolytic machinery playing a crucial role in culmination of engulfment process during the sporulation in Bacillus anthracis.

5.
J Bacteriol ; 203(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753466

RESUMO

Anthrax is a zoonotic disease caused by Bacillus anthracis, a spore-forming pathogen that displays a chaining phenotype. It has been reported that the chaining phenotype acts as a virulence factor in B. anthracis In this study, we identify a serine/threonine protein kinase of B. anthracis, PrkC, the only kinase localized at the bacteria-host interface, as a determinant of B. anthracis chain length. In vitro, prkC disruption strain (BAS ΔprkC) grew as shorter chains throughout the bacterial growth cycle. A comparative analysis between the parent strain and BAS ΔprkC indicated that the levels of proteins, BslO and Sap, associated with the regulation of the bacterial chain length, were upregulated in BAS ΔprkC BslO is a septal murein hydrolase that catalyzes daughter cell separation and Sap is an S-layer structural protein required for the septal localization of BslO. PrkC disruption also has a significant effect on bacterial growth, cell wall thickness, and septa formation. Upregulation of ftsZ in BAS ΔprkC was also observed. Altogether, our results indicate that PrkC is required for maintaining optimum growth, cell wall homeostasis and most importantly - for the maintenance of the chaining phenotype.IMPORTANCEChaining phenotype acts as a virulence factor in Bacillus anthracis This is the first study that identifies a 'signal transduction protein' with an ability to regulate the chaining phenotype in Bacillus anthracis We show that the disruption of the lone surface-localized serine/threonine protein kinase, PrkC, leads to the shortening of the bacterial chains. We report upregulation of the de-chaining proteins in the PrkC disruption strain. Apart from this, we also report for the first time that PrkC disruption results in an attenuated cell growth, a decrease in the cell wall thickness and aberrant cell septa formation during the logarithmic phase of growth - a growth phase where PrkC is expressed maximally.

6.
Indian J Microbiol ; 57(1): 1-10, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28148975

RESUMO

Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive-metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis-an intracellular pathogen and Bacillus anthracis-an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.

7.
J Biol Chem ; 291(46): 24215-24230, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27758870

RESUMO

Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Viabilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Tuberculose/enzimologia , Animais , Proteínas de Bactérias/genética , Deleção de Genes , Camundongos , Mycobacterium tuberculosis/genética , Fosfoproteínas Fosfatases/genética , Tuberculose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...