Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Apoptosis ; 19(11): 1545-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146045

RESUMO

It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.


Assuntos
Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Tosilina Clorometil Cetona/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Estresse Oxidativo , Transdução de Sinais , Tosilfenilalanil Clorometil Cetona/farmacologia
2.
J Neuroendocrinol ; 25(5): 446-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23301857

RESUMO

The hypothalamus has been identified as a main insulin target tissue for regulating normal body weight and glucose metabolism. Recent observations suggest that c-Jun-N-terminal kinase (JNK)-signalling plays a crucial role in the development of obesity and insulin resistance because neuronal JNK-1 ablation in the mouse prevented high-fat diet-induced obesity (DIO) and increased energy expenditure, as well as insulin sensitivity. In the present study, we investigated whether central JNK inhibition is associated with sensitisation of hypothalamic insulin signalling in mice fed a high-fat diet for 3 weeks and in leptin-deficient mice. We determined whether i.c.v. injection of a pharmacological JNK-inhibitor (SP600125) improved impaired glucose homeostasis. By immunohistochemistry, we first observed that JNK activity was increased in the arcuate nucleus (ARC) and the ventromedial hypothalamus (VMH) in both mouse models, relative to normoglycaemic controls. This suggests that up-regulation of JNK in these regions is associated with glucose intolerance and obesity, independent of leptin levels. Acute i.c.v. injection of SP600125 ameliorated glucose tolerance within 30 min in both leptin-deficient and DIO mice. Given the acute nature of i.c.v. injections, these effects cannot be attributed to changes in food intake or energy balance. In a hypothalamic cell line, and in the ARC and VMH of leptin-deficient mice, JNK inhibition by SP600125 consistently improved impaired insulin signalling. This was determined by a reduction of phospho-insulin receptor substrate-1 [IRS-1(Ser612)] protein in a hypothalamic cell line and a decline in the number of pIRS-1(Ser612) immunoreactive cells in the ARC and VMH. Serine 612 phosphorylation of IRS-1 is assumed to negatively regulate insulin signalling. In leptin-deficient mice, in both nuclei, central inhibition of JNK increased the number of cells immunoreactive for phospho-Akt (Ser473) and phospho-GSK-3ß (Ser9), which are important markers of insulin signalling. Collectively, our data suggest that the acute inhibition of central JNK improves impaired glucose homeostasis and is associated with sensitisation of hypothalamic insulin signalling.


Assuntos
Comportamento Alimentar , Neurônios/fisiologia , Ocitocina/fisiologia , Hormônio Liberador de Prolactina/fisiologia , Animais , Camundongos , Peptídeos/análise , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...