Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 23(14): 1461-1478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36658710

RESUMO

Induction of cell death and inhibition of cell proliferation in cancer have been set as some of the main goals in anti-tumor therapy. Cancer cell resistance leads to less efficient cancer therapy, and consequently, to higher doses of anticancer drugs, which may eventually increase the risk of serious side effects in normal tissues. Apigenin, a nature-derived and herbal agent, which has shown anticancer properties in several types of cancer, can induce cell death directly and/or amplify the induction of cell death through other anti-tumor modalities. Although the main mechanism of apigenin in order to induce cell death is apoptosis, other cell death pathways, such as autophagic cell death, senescence, anoikis, necroptosis, and ferroptosis, have been reported to be induced by apigenin. It seems that apigenin enhances apoptosis by inducing anticancer immunity and tumor suppressor genes, like p53 and PTEN, and also by inhibiting STAT3 and NF-κB signaling pathways. Furthermore, it may induce autophagic cell death and ferroptosis by inducing endogenous ROS generation. Stimulation of ROS production and tumor suppressor genes, as well as downregulation of drug-resistance mediators, may induce other mechanisms of cell death, such as senescence, anoikis, and necroptosis. It seems that the induction of each type of cell death is highly dependent on the type of cancer. These modulatory actions of apigenin have been shown to enhance anticancer effects by other agents, such as ionizing radiation and chemotherapy drugs. This review explains how cancer cell death may be induced by apigenin at the cellular and molecular levels.


Assuntos
Apigenina , Neoplasias , Apigenina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Morte Celular , Apoptose , Neoplasias/tratamento farmacológico
2.
Mol Biol Rep ; 49(10): 10023-10037, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35733061

RESUMO

Breast cancer is a heterogeneous disorder with different molecular subtypes and biological characteristics for which there are diverse therapeutic approaches and clinical outcomes specific to any molecular subtype. It is a global health concern due to a lack of efficient therapy regimens that might be used for all disease subtypes. Therefore, treatment customization for each patient depending on molecular characteristics should be considered. Precision medicine for breast cancer is an approach to diagnosis, treatment, and prevention of the disease that takes into consideration the patient's genetic makeup. Precision medicine provides the promise of highly individualized treatment, in which each individual breast cancer patient receives the most appropriate diagnostics and targeted therapies based on the genetic profile of cancer. The knowledge about the molecular features and development of breast cancer treatment approaches has increased, which led to the development of new targeted therapeutics. Tumor genomic profiling is the standard of care for breast cancer that could contribute to taking steps to better management of malignancies. It holds great promise for accurate prognostication, prediction of response to common systemic therapies, and individualized monitoring of the disease. The emergence of targeted treatment has significantly enhanced the survival of patients with breast cancer and contributed to reducing the economic costs of the health system. In this review, we summarized the therapeutic approaches associated with the molecular classification of breast cancer to help the best treatment selection specific to the target patient.


Assuntos
Neoplasias da Mama , Medicina de Precisão , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...