Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 90(12): e0032822, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36374101

RESUMO

CD4 T cell-dependent IFNγ production and antibody are the two best known effectors for protective immunity against Chlamydia female reproductive tract (FRT) infection. Nevertheless, mice lacking either IFNγ or B cells can clear the vast majority of Chlamydia from the FRT, while suffering from varying degrees of disseminated infection. In this study, we investigated whether IFNγ and B cells play complementary roles in host defense against Chlamydia and evaluated their relative contributions in systemic and mucosal tissues. Using mice deficient in both IFNγ and B cells (IFNγ-/- x µMT), we showed that mice lacking both effectors were highly susceptible to lethal systemic bacterial dissemination following Chlamydia muridarum intravaginal infection. Passive transfer of immune convalescent serum, but not recombinant IFNγ, reduced bacterial burden in both systemic and mucosal tissues in IFNγ-/- x µMT mice. Notably, over the course of primary infection, we observed a reduction of bacterial shedding of more than 2 orders of magnitude in IFNγ-/- x µMT mice following both C. muridarum and C. trachomatis FRT infections. In contrast, no protective immunity against C. muridarum reinfection was detected in the absence of IFNγ and B cells. Together, our results suggest that IFNγ and B cells synergize to combat systemic Chlamydia dissemination, while additional IFNγ and B cell-independent mechanisms exist for host resistance to Chlamydia in the lower FRT.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Infecções do Sistema Genital , Feminino , Camundongos , Animais , Reinfecção , Chlamydia trachomatis , Infecções por Chlamydia/microbiologia , Infecções do Sistema Genital/microbiologia , Interferon gama , Anticorpos Antibacterianos
2.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257535

RESUMO

Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/imunologia , Genitália Feminina/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Interferon gama/imunologia , Camundongos Endogâmicos C57BL/imunologia , Infecções do Sistema Genital/imunologia , Animais , Chlamydia muridarum , Feminino , Humanos , Camundongos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...