Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 16(12): 7842-7848, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960518

RESUMO

We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

2.
Science ; 343(6175): 1125-9, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604197

RESUMO

van der Waals heterostructures assembled from atomically thin crystalline layers of diverse two-dimensional solids are emerging as a new paradigm in the physics of materials. We used infrared nanoimaging to study the properties of surface phonon polaritons in a representative van der Waals crystal, hexagonal boron nitride. We launched, detected, and imaged the polaritonic waves in real space and altered their wavelength by varying the number of crystal layers in our specimens. The measured dispersion of polaritonic waves was shown to be governed by the crystal thickness according to a scaling law that persists down to a few atomic layers. Our results are likely to hold true in other polar van der Waals crystals and may lead to new functionalities.

3.
Nat Nanotechnol ; 8(11): 821-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24122082

RESUMO

Graphene, a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics and plasmonics, can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications. The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries. However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently. Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (∼10-20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits.

4.
Nano Lett ; 9(5): 1835-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19400579

RESUMO

We report on a simple electromechanical memory device in which an iron nanoparticle shuttle is controllably positioned within a hollow nanotube channel. The shuttle can be moved reversibly via an electrical write signal and can be positioned with nanoscale precision. The position of the shuttle can be read out directly via a blind resistance read measurement, allowing application as a nonvolatile memory element with potentially hundreds of memory states per device. The shuttle memory has application for archival storage, with information density as high as 10(12) bits/in(2), and thermodynamic stability in excess of one billion years.


Assuntos
Arquivos , Ferro/química , Memória , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Nanotubos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...