Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1389816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840777

RESUMO

Spiral ganglion neurons (SGNs) transmit auditory information from cochlear hair cells to the brain. SGNs are thus not only important for normal hearing, but also for effective functioning of cochlear implants, which stimulate SGNs when hair cells are missing. SGNs slowly degenerate following aminoglycoside-induced hair cell loss, a process thought to involve an immune response. However, the specific immune response pathways involved remain unknown. We used RNAseq to gain a deeper understanding immune-related and other transcriptomic changes that occur in the rat spiral ganglion after kanamycin-induced deafening. Among the immune and inflammatory genes that were selectively upregulated in deafened spiral ganglia, the complement cascade genes were prominent. We then assessed SGN survival, as well as immune cell numbers and activation, in the spiral ganglia of rats with a CRISPR-Cas9-mediated knockout of complement component 3 (C3). Similar to previous findings in our lab and other deafened rodent models, we observed an increase in macrophage number and increased expression of CD68, a marker of phagocytic activity and cell activation, in macrophages in the deafened ganglia. Moreover, we found an increase in MHCII expression on spiral ganglion macrophages and an increase in lymphocyte number in the deafened ganglia, suggestive of an adaptive immune response. However, C3 knockout did not affect SGN survival or increase in macrophage number/activation, implying that complement activation does not play a role in SGN death after deafening. Together, these data suggest that both innate and adaptive immune responses are activated in the deafened spiral ganglion, with the adaptive response directly contributing to cochlear neurodegeneration.

2.
Front Pharmacol ; 15: 1369757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533258

RESUMO

Introduction: Antiretroviral (ARV) drugs have improved prognoses for people living with HIV. However, HIV-associated neurocognitive disorders (HAND) persist despite undetectable viral loads. Some ARVs have been linked to neuropsychiatric effects that may contribute to HAND. Synapse loss correlates with cognitive decline in HAND and synaptic deficits may contribute to the neuropsychiatric effects of ARV drugs. Methods: Using an automated high content assay, rat hippocampal neurons in culture expressing PSD95-eGFP to label glutamatergic synapses and mCherry to fill neuronal structures were imaged before and after treatment with 25 clinically used ARVs. Results and Discussion: At a concentration of 10 µM the protease inhibitors nelfinavir and saquinavir, the non-nucleoside reverse transcriptase inhibitors etravirine and the 8-OH metabolite of efavirenz, the integrase inhibitor bictegravir, and the capsid inhibitor lenacapavir produced synaptic toxicity. Only lenacapavir produced synapse loss at the nanomolar concentrations estimated free in the plasma, although all 4 ARV drugs induced synapse loss at Cmax. Evaluation of combination therapies did not reveal synergistic synaptic toxicity. Synapse loss developed fully by 24 h and persisted for at least 3 days. Bictegravir-induced synapse loss required activation of voltage-gated Ca2+ channels and bictegravir, etravirine, and lenacapavir produced synapse loss by an excitotoxic mechanism. These results indicate that select ARV drugs might contribute to neuropsychiatric effects in combination with drugs that bind serum proteins or in disease states in which synaptic function is altered. The high content imaging assay used here provides an efficient means to evaluate new drugs and drug combinations for potential CNS toxicity.

3.
Neurotherapeutics ; 20(2): 578-601, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697994

RESUMO

Destruction of cochlear hair cells by aminoglycoside antibiotics leads to gradual death of the spiral ganglion neurons (SGNs) that relay auditory information to the brain, potentially limiting the efficacy of cochlear implants. Because the reasons for this cochlear neurodegeneration are unknown, there are no neuroprotective strategies for patients. To investigate this problem, we assessed transcriptomic changes in the rat spiral ganglion following aminoglycoside antibiotic (kanamycin)-induced hair cell destruction. We observed selectively increased expression of immune and inflammatory response genes and increased abundance of activated macrophages in spiral ganglia by postnatal day 32 in kanamycin-deafened rats, preceding significant SGN degeneration. Treatment with the anti-inflammatory medications dexamethasone and ibuprofen diminished long-term SGN degeneration. Ibuprofen and dexamethasone also diminished macrophage activation. Efficacy of ibuprofen treatment was augmented by co-administration of the nicotinamide adenine dinucleotide-stabilizing agent P7C3-A20. Our results support a critical role of neuroinflammation in SGN degeneration after aminoglycoside antibiotic-mediated cochlear hair cell loss, as well as a neuroprotective strategy that could improve cochlear implant efficacy.


Assuntos
Ibuprofeno , Gânglio Espiral da Cóclea , Ratos , Animais , Ibuprofeno/metabolismo , Células Ciliadas Auditivas/metabolismo , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Antibacterianos/toxicidade , Canamicina/toxicidade , Canamicina/metabolismo , Neurônios , Anti-Inflamatórios/metabolismo , Dexametasona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...