Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959589

RESUMO

In this work, additively manufactured pin-joint specimens are analyzed for their mechanical performance and functionality. The functionality of a pin-joint is its ability to freely rotate. The specimens were produced using laser powder bed fusion technology with the titanium alloy Ti6Al4V. The pin-joints were manufactured using previously optimized process parameters to successfully print miniaturized joints with an angle to the build plate. The focus of this work lies in the influence of joint clearance, and therefore all specimens were manufactured with a variety of clearance values, from 0 µm up to 150 µm, in 10 µm steps. The functionality and performance were analyzed using torsion testing and tensile testing. Furthermore, a metallographic section was conducted to visually inspect the clearances of the additively manufactured pin-joints with different joint clearance values. The results of the torsion and tensile tests complement each other and emphasize a correlation between the joint clearance and the maximal particle size of the powder utilized for manufacturing and the mechanical behavior and functionality of the pin-joints. Non-assembly multibody pin-joints with good functionality were obtained reliably using a joint clearance of 90 µm or higher. Our findings show how and with which properties miniaturized pin-joints that can be integrated into lattice structures can be successfully manufactured on standard laser powder bed fusion machines. The results also indicate the potential and limitations of further miniaturization.

2.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902913

RESUMO

This work introduced additively manufactured non-assembly, miniaturized pin-joints for pantographic metamaterials as perfect pivots. The titanium alloy Ti6Al4V was utilized with laser powder bed fusion technology. The pin-joints were produced using optimized process parameters required for manufacturing miniaturized joints, and they were printed at a particular angle to the build platform. Additionally, this process optimization will eliminate the requirement to geometrically compensate the computer-aided design model, allowing for even further miniaturization. In this work, pin-joint lattice structures known as pantographic metamaterials were taken into consideration. The mechanical behavior of the metamaterial was characterized by bias extension tests and cyclic fatigue experiments, showing superior levels of performance (no sign of fatigue for 100 cycles of an elongation of approximately 20%) in comparison to classic pantographic metamaterials made with rigid pivots. The individual pin-joints, with a pin diameter of 350 to 670 µm, were analyzed using computed tomography scans, indicating that the mechanism of the rotational joint functions well even though the clearance of 115 to 132 µm between the moving parts is comparable to the nominal spatial resolution of the printing process. Our findings emphasize new possibilities to develop novel mechanical metamaterials with actual moving joints on a small scale. The results will also support stiffness-optimized metamaterials with variable-resistance torque for non-assembly pin-joints in the future.

3.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676256

RESUMO

This work analyses damage formation within the bulk of basalt fiber-reinforced polymers (BFRP) by means of open-source Digital Volume Correlation (DVC). Volumetric image data were obtained from conventional in-situ X-Ray computed micro-tomography (µCT) of samples loaded in tension. The open-source image registration toolkit Elastix was employed to obtain full 3D displacement fields from the image data. We assessed the accuracy of the DVC results using the method of manufactured solution and showed that the approach followed here can detect deformation with a magnitude in the order of a fiber diameter which in the present case is 17 µm. The beneficial influence of regularization on DVC results is presented on the manufactured solution as well as on real in-situ tensile testing CT data of a BFRP sample. Results of the correlation showed that conventional µCT equipment in combination with DVC can be used to detect defects which could previously only be visualized using synchrotron facilities or destructive methods.

4.
Materials (Basel) ; 15(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806614

RESUMO

This work showcases a novel phenomenological method to create predictive simulations of metallic lattice structures. The samples were manufactured via laser powder bed fusion (LPBF). Simulating LPBF-manufactured metamaterials accurately presents a challenge. The printed geometry is different from the CAD geometry the lattice is based on. The reasons are intrinsic limitations of the printing process, which cause defects such as pores or rough surfaces. These differences result in material behavior that depends on the surface/volume ratio. To create predictive simulations, this work introduces an approach to setup a calibrated simulation based on a combination of experimental force data and local displacements obtained via global Digital Image Correlation (DIC). The displacement fields are measured via Finite Element based DIC and yield the true local deformation of the structure. By exploiting symmetries of the geometry, a simplified parametrized simulation model is created. The simulation is calibrated via Response Surface Methodology based on nodal displacements from FE-DIC combined with the experimental force/displacement data. This method is used to create a simulation of an anti-tetrachiral, auxetic structure. The transferability and accuracy are discussed, as well as the possible extension into 3D space.

5.
PLoS One ; 7(12): e51989, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300586

RESUMO

We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.


Assuntos
Hidrodinâmica , Bicamadas Lipídicas/química , Modelos Químicos , Simulação de Dinâmica Molecular , Temperatura , Termodinâmica , Água/química , Algoritmos , Membrana Celular/metabolismo , Humanos , Fosfolipídeos/química
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 2): 036703, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18851185

RESUMO

We present a general and unifying framework for deriving Monte Carlo acceptance rules which facilitate flat histogram sampling. The framework yields uniform sampling rules for thermodynamic states given by the mechanically extensive variables appearing in the Hamiltonian. Likewise, Monte Carlo schemes which uniformly sample the thermodynamic fields that are conjugate to the mechanical variables can be derived within this framework. We apply these different, yet equivalent sampling schemes to the extended Hubbard model in the atomic limit with explicit electron spin. Results for the full density-of-states, the charge-order parameter distribution, and phase diagrams for different ratios of the on-site Hubbard repulsion and the intersite interaction are presented. A tricritical point at half-filling of the lattice is located using finite-size scaling techniques.

7.
J Chem Phys ; 127(15): 154504, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17949170

RESUMO

Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens.

8.
J Chem Phys ; 126(19): 191104, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17523784

RESUMO

Vapor-liquid coexistence in fluids of charged hard dumbbells, each made up of two oppositely charged hard spheres with diameters sigma and separation d, has been studied using grand-canonical Monte Carlo simulations. In the limit d/sigma-->0, and with the temperature scaled accordingly, the system corresponds to dipolar hard spheres. For separations in the range 0.30 yield estimates of the apparent critical parameters for dipolar hard spheres.

9.
J Chem Phys ; 125(1): 014707, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16863324

RESUMO

Based upon Monte Carlo simulations of amorphous molecular glasses, we have computed the electronic structure of five prototypical polyaromatic hydrocarbons using an extended Su-Schrieffer-Heeger model [J. R. Schrieffer, W. P. Su, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)]. In the presence of excess charges, the resulting potential energy surfaces have been analyzed using Marcus' [Annu. Rev. Phys. Chem. 15, 155 (1964)] theory of charge transfer to yield reaction coefficients and--via the application of linear response theory--local conductivities. Applying Kirchhoff's rules, the emerging random resistor network problem leads to global conductivities of the order of 10(-1)-1 Scm, which correlate with the structural characteristics of the underlying geometry.

10.
J Chem Phys ; 122(23): 234321, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16008455

RESUMO

Previous work testing density functionals for use in calculating high-spin-low-spin energy differences, deltaE(HL), for iron(II) spin-crossover transitions has tended to conclude that only properly reparametrized hybrid functionals can predict deltaE(HL) since it seems to depend critically on a correct description of the electron pairing energy governed by the exchange term. Exceptions to this rule are the previous three papers (I, II, and III in the present series of papers) where it was found that modern generalized gradient approximations (GGAs) and meta-GGAs could do as well as hybrid functionals, if not better, for this type of problem. In the present paper, we extend these previous studies to five more molecules which are too large to treat with high-quality ab initio calculations, namely, the series [Fe(L)('NHS(4)')], where NHS(4)=2.2'-bis(2-mercaptophenylthio)diethylamine dianion, and L=NH(3), N(2)H(4), PMe(3), CO, and NO(+). Since we know of no reliable experimental estimate of deltaE(HL), we content ourselves with a comparison against the experimentally determined ground-state spin symmetry including, in so far as possible, finite-temperature effects. Together with the results of Papers I, II, and III, this paper provides a test of a large number of functionals against the high-spin/low-spin properties of a diverse set of Fe(II) compounds, making it possible to draw some particularly interesting conclusions. Trends among different classes of functionals are discussed and it is pointed out that there is at least one functional, namely, the OLYP generalized gradient approximation, which is able to give a reasonably good description of the delicate spin energetics of Fe(II) coordination compounds without resorting to hybrid functionals which require the relatively more expensive calculation of a Hartree-Fock-type exchange term.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...