Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0252623, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019005

RESUMO

IMPORTANCE: Flagellar motility plays an important role in the environmental adaptation of bacteria and is found in more than 50% of known bacterial species. However, this important characteristic is sparsely distributed within members of the phylum Actinobacteria, which constitutes one of the largest bacterial groups. It is unclear why this important fitness organelle is absent in most actinobacterial species and the origin of flagellar genes in other species. Here, we present detailed analyses of the evolution of flagellar genes in Actinobacteria, in conjunction with the ecological distribution and cell biological features of major actinobacterial lineages, and the co-evolution of signal transduction systems. The results presented in addition to clarifying the puzzle of sporadic distribution of flagellar motility in Actinobacteria, also provide important insights into the evolution of major lineages within this phylum.

2.
PLoS Pathog ; 18(11): e1010953, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36327346

RESUMO

Campylobacter jejuni is a food-borne zoonotic pathogen of worldwide concern and the leading cause of bacterial diarrheal disease. In contrast to other enteric pathogens, C. jejuni has strict growth and nutritional requirements but lacks many virulence factors that have evolved for pathogenesis or interactions with the host. It is unclear how this bacterium has adapted to an enteric lifestyle. Here, we discovered that the CheO protein (CJJ81176_1265) is required for C. jejuni colonization of mice gut through its role in chemotactic control of flagellar rotation in oxygen-limiting environments. CheO interacts with the chemotaxis signaling proteins CheA and CheZ, and also with the flagellar rotor components FliM and FliY. Under microaerobic conditions, CheO localizes at the cellular poles where the chemosensory array and flagellar machinery are located in C. jejuni and its polar localization depends on chemosensory array formation. Several chemoreceptors that mediate energy taxis coordinately determine the bipolar distribution of CheO. Suppressor screening for a ΔcheO mutant identified that a single residue variation in FliM can alleviate the phenotype caused by the absence of CheO, confirming its regulatory role in the flagellar rotor switch. CheO homologs are only found in species of the Campylobacterota phylum, mostly species of host-associated genera Campylobacter, Helicobacter and Wolinella. The CheO results provide insights into the complexity of chemotaxis signal transduction in C. jejuni and closely related species. Importantly, the recruitment of CheO into chemosensory array to promote chemotactic behavior under hypoxia represents a new adaptation strategy of C. jejuni to human and animal intestines.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Camundongos , Humanos , Animais , Campylobacter jejuni/genética , Flagelos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Hipóxia/metabolismo , Infecções por Campylobacter/metabolismo
3.
PLoS Genet ; 18(7): e1010316, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35834583

RESUMO

The evolution of macromolecular complex is a fundamental biological question, which is related to the origin of life and also guides our practice in synthetic biology. The chemosensory system is one of the complex structures that evolved very early in bacteria and displays enormous diversity and complexity in terms of composition and array structure in modern species. However, how the diversity and complexity of the chemosensory system evolved remains unclear. Here, using the Campylobacterota phylum with a robust "eco-evo" framework, we investigated the co-evolution of the chemosensory system and one of its important signaling outputs, flagellar machinery. Our analyses show that substantial flagellar gene alterations will lead to switch of its primary chemosensory class from one to another, or result in a hybrid of two classes. Unexpectedly, we discovered that the high-torque generating flagellar motor structure of Campylobacter jejuni and Helicobacter pylori likely evolved in the last common ancestor of the Campylobacterota phylum. Later lineages that experienced significant flagellar alterations lost some key components of complex scaffolding structures, thus derived simpler structures than their ancestor. Overall, this study revealed the co-evolutionary path of the chemosensory system and flagellar system, and highlights that the evolution of flagellar structural complexity requires more investigation in the Bacteria domain based on a resolved phylogenetic framework, with no assumptions on the evolutionary direction.


Assuntos
Campylobacter jejuni , Helicobacter pylori , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Flagelos/genética , Filogenia
4.
mBio ; 13(3): e0076422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536007

RESUMO

Microbes rely on signal transduction systems to sense and respond to environmental changes for survival and reproduction. It is generally known that niche adaptation plays an important role in shaping the signaling repertoire. However, the evolution of bacterial signaling capacity lacks systematic studies with a temporal direction. In particular, it is unclear how complexity evolved from simplicity or vice versa for signaling networks. Here, we examine the evolutionary processes of major signal transduction systems in Campylobacterota (formerly Epsilonproteobacteria), a phylum with sufficient evolutionary depth and ecological diversity. We discovered that chemosensory system increases complexity by horizontal gene transfer (HGT) of entire chemosensory classes, and different chemosensory classes rarely mix their components. Two-component system gains complexity by atypical histidine kinases fused with receiver domain to achieve multistep or branched signal transduction process. The presence and complexity of c-di-GMP-mediated system is related to the size of signaling network, and c-di-GMP pathways are easy to rewire, since enzymes and effectors can be linked without direct protein-protein interaction. Overall, signaling capacity and complexity rise and drop together in Campylobacterota, determined by sensory demand, genetic resources, and coevolution within the genomic context. These findings reflect plausible evolutionary principles for other cellular networks and genome evolution of the Bacteria domain. IMPORTANCE Bacteria are capable of sensing and responding to environmental changes by several signal transduction systems with different mechanisms. Much attention is paid to model organisms with complex signaling networks to understand their composition and function, but how a complicated network evolved from a simple one or vice versa lacks systematic studies. Here, we tracked the evolutionary process of each signaling system in a bacterial phylum with robust "eco-evo" framework and summarized the general principles of signaling network evolution. Our findings bridge the gaps in bacterial signaling capacity from highly sophisticated to extremely streamlined, shedding light on rational design of genetic circuitry. This study may serve as a paradigm to examine the complex construction of other cellular networks and genome evolution.


Assuntos
GMP Cíclico , Transdução de Sinais , Adaptação Fisiológica , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo
5.
Emerg Microbes Infect ; 11(1): 1554-1571, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35603550

RESUMO

Adaptation to various stresses during infection is important for Salmonella Typhimurium virulence, while the fitness determinants under infection-relevant stress conditions remain unknown. Here, we simulated conditions Salmonella encountered within the host or in the environment by 15 individual stresses as well as two model cell lines (epithelium and macrophage) to decipher the genes and pathways required for fitness. By high-resolution Tn-seq analysis, a total of 1242 genes were identified as essential for fitness under at least one stress condition. The comparative analysis of fitness determinants in 17 stress conditions indicated the essentiality of genes varied in different mimicking host niches. A total of 12 genes were identified as fitness determinants in all stress conditions, including recB, recC, and xseA (encode three exonuclease subunits necessary for DNA recombination repair) and a novel essential fitness gene yheM. YheM is a putative sulfurtransferase subunit that is responsible for tRNA modification, and our results showed that Salmonella lacking yheM accumulated more aggregates of endogenous protein than wild-type. Moreover, we established a scoring scheme for sRNA essentiality analysis and found STnc2080 of unknown function was essential for resistance to LL-37. In summary, we systematically dissected Salmonella gene essentiality profiling and demonstrated the general and specific adaptive requirements in infection-relevant niches. Our data not only provide valuable insights on how Salmonella responds to environmental stresses during infections but also highlight the potential clinical application of fitness determinants in vaccine development.


Assuntos
Agregados Proteicos , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/metabolismo , Virulência/genética
6.
Environ Microbiol Rep ; 14(1): 147-163, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921716

RESUMO

Cobalamin (vitamin B12 ) is an essential micronutrient required by both prokaryotes and eukaryotes. Nevertheless, with high genetic and metabolic cost, de novo cobalamin biosynthesis is exclusive to a subset of prokaryotic taxa. Many Cyanobacterial and Archaeal taxa have been implicated in de novo cobalamin biosynthesis in epi- and mesopelagic ocean respectively. However, the contributions of Gammaproteobacteria particularly the family 'Psychromonadaceae' is largely unknown. Through phylo-pangenomic analyses using concatenated single-copy proteins and homologous gene clusters respectively, the phylogenies within 'Psychromonadaceae' recapitulate both their taxonomic delineations and environmental distributions. Moreover, uneven distribution of cobalamin de novo biosynthetic operon and cobalamin-dependent light-responsive regulon were observed, and of which the linkages to the environmental conditions where cobalamin availability and light regime can be varied respectively were discussed, suggesting the impacts of ecological divergence in shaping their disparate cobalamin-related metabolisms. Functional analysis demonstrated a varying degree of cobalamin dependency for both central metabolic processes and cobalamin-mediated light-responsive regulation, and underlying sequence characteristics of cis- and trans-regulatory elements were revealed. Our findings emphasized the potential roles of cobalamin in shaping the ecological distributions and driving the metabolic evolution in the marine bacterial family 'Psychromonadaceae', and have further implications for an improved understanding of nutritional interdependencies and community metabolism modulated by cobalamin.


Assuntos
Cianobactérias , Gammaproteobacteria , Cianobactérias/metabolismo , Gammaproteobacteria/metabolismo , Filogenia , Vitamina B 12/metabolismo , Vitaminas
7.
Microb Drug Resist ; 27(12): 1624-1632, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34077284

RESUMO

This study reported the involvement of a gene cluster from a conjugative plasmid in the biofilm formation of Escherichia coli. We used a novel EZ-Tn5 transposon technique to generate a transposon library and used arbitrarily primed PCR to detect the insertion sites in biofilm formation-deficient mutants. To validate the function of candidate biofilm formation genes, the genes were cloned into plasmid pBluescript II SK (+) and transformed into E. coil DH5α. Biofilm production from the transformants was then assessed by phenotypic biofilm formation using Crystal Violet staining and microscopy. A total of 3,000 transposon mutants of E. coli DH5α-p253 were screened, of which 28 were found to be deficient in biofilm formation. Further characterization revealed that 24/28 mutations were detected with their insertions in chromosome, while the remaining 4 mutations were evidenced that the functional genes for biofilm formation were harbored in the plasmid. Interestingly, the plasmid sequencing showed that these four transposon mutations were all inserted into a fimbriae-associated gene cluster (fim-cluster). This fim-cluster is a hybrid segment spanning a 7,949 bp sequence, with a terminal inverted repeat sequence and two coding regions. In summary, we performed a high-efficiency screening to a library constructed with the EZ-Tn5-based transposon approach and identified the gene clusters responsible for the biofilm production of E. coli, especially the genes harbored in the plasmid. Further studies are needed to understand the spread of this novel plasmid-mediated biofilm formation gene in clinical E. coli isolates and the clinical impacts.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/genética , Fímbrias Bacterianas/genética , Plasmídeos/genética , Escherichia coli/efeitos dos fármacos , Fímbrias Bacterianas/efeitos dos fármacos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Fenótipo , Plasmídeos/efeitos dos fármacos
8.
Trends Microbiol ; 28(10): 785-788, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32456977

RESUMO

The bacterial flagellum is beneficial in most cases but it can become a burden when the energy source is low because it is very costly to assemble and energize for motility. Recent electron cryo-tomography and real-time fluorescence microscopy studies suggest that bacteria can remove their flagella under starvation in a programmed way.


Assuntos
Bactérias/metabolismo , Flagelos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Flagelos/genética , Flagelos/ultraestrutura
9.
Front Microbiol ; 10: 1185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178855

RESUMO

The class Thermoleophilia is one of the deep-rooting lineages within the Actinobacteria phylum and metagenomic investigation of microbial diversity suggested that species associated with the class Thermoleophilia are abundant in hot spring and soil samples. However, very few species of this class have been cultivated and characterized. Our understanding of the phylogeny and taxonomy of Thermoleophilia is solely based on 16S rRNA sequence analysis of limited cultivable representatives, but no other phenotypic or genotypic characteristics are known that can clearly discriminate members of this class from the other taxonomic units within the kingdom bacteria. This study reports phylogenomic analysis for 12 sequenced members of this class and clearly resolves the interrelationship of not yet cultivated species with reconstructed genomes and known type species. Comparative genome analysis discovered 12 CSIs in different proteins and 32 CSPs that are specific to all species of this class. In addition, a large number of CSIs or CSPs were identified to be unique to certain lineages within this class. This study represents the first and most comprehensive phylogenetic analysis of the class Thermoleophilia, and the identified CSIs and CSPs provide valuable molecular markers for the identification and delineation of species belonging to this class or its subordinate taxa.

10.
Mol Microbiol ; 111(1): 145-158, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338872

RESUMO

Campylobacter jejuni is the leading cause of foodborne gastrointestinal illness worldwide, and chemotaxis plays an important role in its host colonization and pathogenesis. Although many studies on chemotaxis have focused on the physical organization and signaling mechanism of the system's protein complex, much less is known about the transcriptional regulation of its components. Here, we describe two novel regulators, CJJ81176_0275 and CJJ81176_0276 (designated as CheP and CheQ), which specifically activate the transcription of the chemotaxis core genes cheV, cheA and cheW in C. jejuni and they are also essential for chemotactic responses. CheP has a single HD-related output domain (HDOD) domain and can promote CheQ binding to the cheVAW operon promoter through a protein-protein interaction. Mutagenesis analyses identified key residues critical for CheP function and/or interaction with CheQ. Further structural characterization of CheQ revealed a novel fold with strong positive surface charges that allow for its DNA binding. These findings reveal the gene regulatory mechanism of the chemotaxis system in an important bacterial pathogen and provide potential anti-virulence targets for campylobacteriosis treatment. In addition, ChePQ is an example of how proteins with the widespread but functionally obscure HDOD can coordinate with a signal output DNA-binding protein/domain to regulate the expression of important signaling pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Quimiotaxia , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Óperon , Proteínas de Bactérias/genética , Campylobacter jejuni/fisiologia , Análise Mutacional de DNA , Mapeamento de Interação de Proteínas
11.
Front Microbiol ; 9: 987, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867887

RESUMO

Recent metagenomic surveys of microbial community suggested that species associated with the class Acidimicrobiia are abundant in diverse aquatic environments such as acidic mine water, waste water sludge, freshwater, or marine habitats, but very few species have been cultivated and characterized. The current taxonomic framework of Acidimicrobiia is solely based on 16S rRNA sequence analysis of few cultivable representatives, and no molecular, biochemical, or physiological characteristics are known that can distinguish species of this class from the other bacteria. This study reports the phylogenomic analysis for 20 sequenced members of this class and reveals another three major lineages in addition to the two recognized families. Comparative analysis of the sequenced Acidimicrobiia species identified 15 conserved signature indels (CSIs) in widely distributed proteins and 26 conserved signature proteins (CSPs) that are either specific to this class as a whole or to its major lineages. This study represents the most comprehensive phylogenetic analysis of the class Acidimicrobiia and the identified CSIs and CSPs provide useful molecular markers for the identification and delineation of species belonging to this class or its subgroups.

12.
PLoS Biol ; 15(5): e2001390, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28542173

RESUMO

Campylobacter jejuni is one of the leading infectious causes of food-borne illness around the world. Its ability to persistently colonize the intestinal tract of a broad range of hosts, including food-producing animals, is central to its epidemiology since most infections are due to the consumption of contaminated food products. Using a highly saturated transposon insertion library combined with next-generation sequencing and a mouse model of infection, we have carried out a comprehensive genome-wide analysis of the fitness determinants for growth in vitro and in vivo of a highly pathogenic strain of C. jejuni. A comparison of the C. jejuni requirements to colonize the mouse intestine with those necessary to grow in different culture media in vitro, combined with isotopologue profiling and metabolic flow analysis, allowed us to identify its metabolic requirements to establish infection, including the ability to acquire certain nutrients, metabolize specific substrates, or maintain intracellular ion homeostasis. This comprehensive analysis has identified metabolic pathways that could provide the basis for the development of novel strategies to prevent C. jejuni colonization of food-producing animals or to treat human infections.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Gastroenterite/microbiologia , Modelos Biológicos , Absorção Fisiológica , Aminoácidos/metabolismo , Animais , Antibacterianos/efeitos adversos , Proteínas de Bactérias/genética , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/isolamento & purificação , Proteínas de Transporte de Cátions/genética , Elementos de DNA Transponíveis , Disbiose/induzido quimicamente , Disbiose/microbiologia , Deleção de Genes , Estudos de Associação Genética , Genoma Bacteriano , Biblioteca Genômica , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Mutagênese Insercional , Mutação
13.
Front Microbiol ; 7: 978, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446019

RESUMO

The order Bifidobacteriales comprises a diverse variety of species found in the gastrointestinal tract of humans and other animals, some of which are opportunistic pathogens, whereas a number of others exhibit health-promoting effects. However, currently very few biochemical or molecular characteristics are known which are specific for the order Bifidobacteriales, or specific clades within this order, which distinguish them from other bacteria. This study reports the results of detailed comparative genomic and phylogenetic studies on 62 genome-sequenced species/strains from the order Bifidobacteriales. In a robust phylogenetic tree for the Bifidobacteriales constructed based on 614 core proteins, a number of well-resolved clades were observed including a clade separating the Scarodvia-related genera (Scardovia clade) from the genera Bifidobacterium and Gardnerella, as well as a number of previously reported clusters of Bifidobacterium spp. In parallel, our comparative analyses of protein sequences from the Bifidobacteriales genomes have identified numerous molecular markers that are specific for this group of bacteria. Of these markers, 32 conserved signature indels (CSIs) in widely distributed proteins and 10 signature proteins are distinctive characteristics of all sequenced Bifidobacteriales species and provide novel and highly specific means for distinguishing these bacteria. In addition, multiple other molecular signatures are specific for the following clades of Bifidobacteriales: (i) 5 CSIs specific for a clade comprising of the Scardovia-related genera; (ii) 3 CSIs and 2 CSPs specific for a clade consisting of the Bifidobacterium and Gardnerella spp.; (iii) multiple other signatures demarcating a number of clusters of the B. asteroides-and B. longum- related species. The described molecular markers provide novel and reliable means for distinguishing the Bifidobacteriales and a number of their clades in molecular terms and for the classification of these bacteria. The Bifidobacteriales-specific CSIs, found in important proteins, are predicted to play important roles in modifying the cellular functions of the affected proteins. Hence, biochemical studies on the cellular functions of these CSIs could lead to discovery of novel characteristics of either all Bifidobacteriales, or specific groups of bacteria within this order. Some of the functions affected/modified by these genetic changes could also be important for the probiotic/pathogenic activities of the bifidobacteria.

14.
mBio ; 5(3): e01349-14, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24961693

RESUMO

UNLABELLED: Motility is essential for the pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a cell wall-anchored motor using chemical energy. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant differences in the flagellar structures of different bacterial species. The molecular bases for these differences, however, are not understood. The flagella from epsilonproteobacteria, which include the bacterial pathogens Campylobacter jejuni and Helicobacter pylori, are among the most divergent. Using next-generation sequencing combined with transposon mutagenesis, we have conducted a comprehensive high-throughput genetic screen in Campylobacter jejuni, which identified several novel components of its flagellar system. Biochemical analyses detected interactions between the identified proteins and known components of the flagellar machinery, and in vivo imaging located them to the bacterial poles, where flagella assemble. Most of the identified new components are conserved within but restricted to epsilonproteobacteria. These studies provide insight into the divergent flagella of this group of bacteria and highlight the complexity of this remarkable structure, which has adapted to carry out its conserved functions in the context of widely diverse bacterial species. IMPORTANCE: Motility is essential for the normal physiology and pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a motor that uses chemical energy as fuel. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant divergence in the flagellar structures across bacterial species. However, the molecular bases for these differences are not understood. The flagella from epsilonproteobacteria, which include the bacterial pathogens Campylobacter jejuni and Helicobacter pylori, are among the most divergent. We conducted a comprehensive genetic screen in Campylobacter jejuni and identified several novel components of the flagellar system. These studies provide important information to understand how flagella have adapted to function in the context of widely diverse sets of bacterial species and bring unique insight into the evolution and function of this remarkable bacterial organelle.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Flagelos/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Flagelos/genética , Helicobacter pylori/genética
15.
Cancer Res ; 74(14): 3659-72, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24845104

RESUMO

E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fenótipo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Processamento Pós-Transcricional do RNA , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma , Homeobox 1 de Ligação a E-box em Dedo de Zinco
16.
PLoS Pathog ; 9(10): e1003668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098123

RESUMO

Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Fator de Transcrição STAT3/metabolismo , Salmonella typhimurium/fisiologia , Células Epiteliais/patologia , Células HeLa , Células Hep G2 , Humanos , Fator de Transcrição STAT3/genética
17.
PLoS One ; 7(11): e50699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226358

RESUMO

Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the invitro and invivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.


Assuntos
Campylobacter jejuni/fisiologia , Prolina/metabolismo , Serina/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Gluconeogênese , Glucose/biossíntese , Camundongos , Especificidade de Órgãos , Pressão Osmótica , Estresse Oxidativo
18.
PLoS Pathog ; 8(3): e1002562, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412372

RESUMO

Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Células COS/microbiologia , Campylobacter jejuni/metabolismo , Metabolismo Energético , Metaboloma , Proteômica , Animais , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Células COS/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Reprogramação Celular , Chlorocebus aethiops , Contaminação de Alimentos , Fumaratos/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno
19.
Microbiol Mol Biol Rev ; 76(1): 66-112, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22390973

RESUMO

The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.


Assuntos
Actinobacteria/classificação , Actinobacteria/genética , Genoma Bacteriano/genética , Filogenia
20.
Antonie Van Leeuwenhoek ; 101(1): 45-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22048742

RESUMO

Microbial systematics and phylogeny should form the foundation and guiding light for a comprehensive understanding of different aspects of microbiology. However, there are many critical issues in microbial systematics that are currently not resolved. Some of these include: how to define and delimit a prokaryotic species; development of rationale criteria for the assignment of higher taxonomic ranks; understanding what unique properties distinguish species from different groups; and understanding the branching order and interrelationship among higher prokaryotic clades. The sequencing of genomes from large numbers of cultured as well as uncultured microbes covering prokaryotic diversity provides unique means to achieve these important objectives. Prokaryotic genomes are found to be very diverse and dynamic and horizontal gene transfers (HGTs) are indicated to have played important role in species/genome evolution. Although HGT adds a layer of complexity in terms of understanding the genomes and species evolution, it is contended that vast majority of genes and genetic characteristics that are distinctive characteristics of higher prokaryotic taxa are vertically inherited and based on them a solid foundation for microbial systematics can be developed. We describe two kinds of molecular markers consisting of conserved indels in protein sequences and whole proteins that are specific for different groups that are proving particularly valuable in defining different prokaryotic groups in clear molecular terms and in understanding their interrelationships. The genetic and biochemical studies on these taxa-specific molecular markers also open the way to discover novel biochemical and physiological characteristics that are unique properties of these groups.


Assuntos
Bactérias/classificação , Bactérias/genética , Classificação/métodos , Filogenia , Evolução Molecular , Transferência Genética Horizontal , Genômica/métodos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...