Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 339: 122240, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823910

RESUMO

Creating multiple-reusable PBAT/TPS (PT) films presents a novel solution to reduce carbon emissions from disposable packaging, addressing challenges like the high creep of PBAT and the glycerol migration of TPS. Consequently, adopting reactive extrusion to fabricate reversible cross-linking TPS with high shape memory performance, low migration, and homogeneous dispersion in PBAT matrix was a fascinating strategy. Herein, starch, glycerol and CaCl2 (calcium chloride) were extruded to fabricate TPS-Ca with Ca2+ heterodentate coordination structure and confirmed by XPS, 1H NMR and temperature-dependent FTIR. The results of DMA, dynamic rheology, flow activation energy and SEM revealed that TPS-Ca exhibited significant temperature-sensitive reversible properties and robust melt flow capability, enabling micro-nano scale dispersion in PBAT. Noteworthy, PBAT/TPS-Ca (PT-Ca) would recover 100 % length within 20 s by microwave heating after being loaded under the hygrothermal environment. Meanwhile, the migration weight of glycerol decreased from 2.5 % to 1.2 % for the heat-moisture-treated PBAT/TPS (HPT) and PBAT/TPS-Ca (HPTCa). Remarkably, the tensile strength and elongation at the break of HPT-Ca increased to 20.0 MPa and 924 %, respectively, due to reduced stress concentration sites in the phase interface. In summary, our study provides a streamlined strategy for fabricating multiple-reusable PT, offering a sustainable solution to eliminate carbon emissions linked to disposable plastic.

2.
Mater Today Bio ; 26: 101044, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600920

RESUMO

Joint injuries are among the leading causes of disability. Present concentrations were focused on oral drugs and surgical treatment, which brings severe and unnecessary difficulties for patients. Smart patches with high flexibility and intelligent drug control-release capacity are greatly desirable for efficient joint management. Herein, we present a novel kirigami spider fibroin-based microneedle triboelectric nanogenerator (KSM-TENG) patch with distinctive features for comprehensive joint management. The microneedle patch consists of two parts: the superfine tips and the flexible backing base, which endow it with great mechanical strength to penetrate the skin and enough flexibility to fit different bends. Besides, the spider fibroin-based MNs served as a positive triboelectric material to generate electrical stimulation, thereby forcing drug release from needles within 720 min. Especially, kirigami structures could also transform the flat patch into three dimensions, which could impart the patch with flexible properties to accommodate the complicated processes produced by joint motion. Benefiting from these traits, the KSM-TENG patch presents excellent performance in inhibiting the inflammatory response and promoting wound healing in mice models. The results indicated that the mice possessed only 2% wound area and the paw thickness was reduced from 10.5 mm to 6.2 mm after treatment with the KSM-TENG patch, which further demonstrates the therapeutic effect of joints in vivo. Thus, it is believed that the proposed novel KSM-TENG patch is valuable in the field of comprehensive treatments and personalized clinical applications.

3.
RSC Adv ; 14(17): 11643-11658, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38605897

RESUMO

Many ordered arrangements are observable in the natural world, serving not only as pleasing aesthetics but also as functional improvements. These structured arrangements streamline cohesion while also facilitating the spontaneous drainage of liquids in microfluidics, resulting in effective separation and signal enhancement. Nevertheless, there is a substantial challenge when handling microstructured chips with microfluidic detection and adhesion. The arrangement of the adhesive interface's microstructure affects the liquid flow in the microfluidic chip, impacting the detection's sensitivity and accuracy. Additionally, the liquid in the microfluidic chip corrodes the adhesive material and structure, reducing the adhesion strength due to the hydration layer between the material and the contact interface. Therefore, this review explores the application of ordered structures in the integration of adhesion and microfluidics. We discussed the standard preparation method, appropriate materials, and the application of ordered structures in biomimetic adhesion and microfluidics. Furthermore, the paper discusses the major challenges in this field and provides opinions on its future developments.

4.
Small ; : e2401706, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602199

RESUMO

In frigid regions, it is imperative to possess functionality materials that are ultrastrong, reusable, and economical, providing self-generated heat and electricity. One promising solution is a solar‒thermal‒electric (STE) generator, composed of solar‒thermal conversion phase change composites (PCCs) and temperature-difference power-generation-sheets. However, the existing PCCs face challenges with conflicting requirements for solar‒thermal conversion efficiency and mechanical robustness, mainly due to monotonous functionalized aerogel framework. Herein, a novel starch vitrimer aerogel is proposed that incorporates orientational distributed carboxylated carbon nanotubes (CCNT) to create PCC. This innovative design integrates large through-holes, mechanical robustness, and superior solar‒thermal conversion. Remarkably, PCC with only 0.8 wt.% CCNT loading achieves 85.8 MPa compressive strength, 102.4 °C at 200 mW cm-2 irradiation with an impressive 92.9% solar-thermal conversion efficiency. Noteworthy, the STE generator assembled with PCC harvests 99.1 W m-2 output power density, surpassing other reported STE generators. Strikingly, even under harsh conditions of -10 °C and 10 mW cm‒2 irradiation, the STE generator maintains 20 °C for PCC with 325 mV output voltage and 45 mA current, showcasing enhanced electricity generation in colder environments. This study introduces a groundbreaking STE generator, paving the way for self-sufficient heat and electricity supply in cold regions.

5.
Int J Biol Macromol ; 268(Pt 1): 131838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663709

RESUMO

Intelligent wound management has important potential for promoting the recovery of chronic wounds caused by diabetes. Here, inspired by the field of kirigami, smart patterned high-stretch microneedle dressings (KPMDs) based on gene-modified spider silk proteins were developed to achieve sensitive biochemical and physiological sensing. The spider silk protein (spidroin) has excellent tensile properties, ductility, toughness and biocompatibility. Notably, the kirigami method-prepared kirigami structure of the spidroin MN dressing had a high tensile strength , while its ductility reached approximately 800 %. Moreover, the unique optical properties of photonic crystals allow for fluorescence enhancement, providing KPMD with color-sensitive properties suitable for wound management and clinical guidance. Furthermore, to improve the sensitivity of KPMD-s to motion monitoring, a microelectronic matrix was integrated on its surface. These distinct material properties suggest that this research lays the foundation for a new generation of high-performance biomimetic diatomaceous earth materials for application.


Assuntos
Fibroínas , Agulhas , Fibroínas/química , Animais , Cicatrização/efeitos dos fármacos , Materiais Biomiméticos/química , Bandagens , Resistência à Tração , Humanos , Materiais Biocompatíveis/química
6.
ACS Sens ; 9(3): 1149-1161, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38478049

RESUMO

Interstitial fluid (ISF) has attracted extensive attention in an extremely wide range of areas due to its unique advantages, such as portability, high precision, comfortable operation, and superior stability. In recent years, the microneedle (MN) technique has been considered to be an excellent tool for extracting ISF because it is painless and noninvasive. Recent reports have shown that MN has good application prospects in ISF extraction. In this review, we provide comprehensive and in-depth insight into integrated MN devices for ISF detection, covering the basic structure as well as the fabrication of integrated MN devices and various applications in ISF extraction. Challenges and prospects are highlighted, with a discussion on how to transition such MN-integrated devices toward personalized healthcare monitoring systems.


Assuntos
Líquido Extracelular , Agulhas , Líquido Extracelular/química
7.
Adv Sci (Weinh) ; 11(22): e2400128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520721

RESUMO

The unique 3D structure of spider silk protein (spidroin) determines the excellent mechanical properties of spidroin fiber, but the difficulty of heterologous expression and poor spinning performance of recombinant spider silk protein limit its application. A high-yield low-molecular-weight biomimetic spidroin (Amy-6rep) is obtained by sequence modification, and its excellent spinning performance is verified by electrospinning it for use as a nanogenerator. Amy-6rep increases the highly fibrogenic microcrystalline region in the core repeat region of natural spidroin with limited sequence length and replaces the polyalanine sequence with an amyloid polypeptide through structural similarity. Due to sequence modification, the expression of Amy-6rep increased by ≈200%, and the self-assembly performance of Amy-6rep significantly increased. After electrospinning with Amy-6rep, the nanofibers exhibit good tribopower generation capacity. In this paper, a biomimetic spidroin sequence design with high yield and good spinning performance is reported, and a strategy for electrospinning to produce an artificial nanogenerator is explored.


Assuntos
Fibroínas , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Animais , Nanofibras/química , Aranhas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Seda/química , Seda/genética
8.
Magn Reson Imaging ; 110: 51-56, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38458551

RESUMO

OBJECTIVE: We investigated the feasibility of using compressed sensitivity encoding (CS-SENSE) to accelerate high-resolution black-blood T1-weighted imaging with variable flip angles (T1WI-VFA) for efficient visualization and characterization of lenticulostriate arteries (LSAs) on a 3.0 T MR scanner. MATERIALS AND METHODS: Twenty-five healthy volunteers and 18 patients with the cerebrovascular disease were prospectively enrolled. Healthy volunteers underwent T1WI-VFA sequences with different acceleration factors (AFs), including conventional sensitivity encoding (SENSE) AF = 3 and CS-SENSE AF = 3, 4, 5, and 6 (SENSE3, CS3, CS4, CS5, CS6, respectively) at 3 Tesla MRI scanner. Objective evaluation (contrast ratio and number, length, and branches of LSAs) and subjective evaluation (overall image quality and LSA visualization scores) were used to assess image quality and LSA visualization. Comparisons were performed among the 5 sequences to select the best AF. All patients underwent both T1WI-VFA with the optimal AF and digital subtraction angiography (DSA) examination, and the number of LSAs observed by T1WI-VFA was compared with that by DSA. RESULTS: Pair-wise comparisons among CS3, CS4, and SENSE3 revealed no significant differences in both objective measurements and subjective evaluation (all P > 0.05). In patients, there was no significant difference in LSA counts on the same side between T1WI-VFA with CS4 and DSA (3, 3-4 and 3, 3-3, P = 0.243). CONCLUSIONS: CS3 provided better LSA visualization but a longer scan duration compared to CS4. And, CS4 strikes a good balance between LSA visualization and acquisition time, which is recommended for routine clinical use.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Angiografia por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Angiografia Digital , Interpretação de Imagem Assistida por Computador/métodos , Transtornos Cerebrovasculares/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem
9.
Sci Rep ; 14(1): 270, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167604

RESUMO

Microstructural abnormalities of white matter fiber tracts are considered as one of the etiology of diabetes-induced neurological disorders. We explored the cerebral white matter microstructure alteration accurately, and to analyze its correlation between cerebral small vessel disease (CSVD) burden and cognitive performance in type 2 diabetes mellitus (T2DM). The clinical-laboratory data, cognitive scores [including mini-mental state examination (MMSE), Montreal cognitive assessment (MoCA), California verbal learning test (CVLT), and symbol digit modalities test (SDMT)], CSVD burden scores of the T2DM group (n = 34) and healthy control (HC) group (n = 21) were collected prospectively. Automatic fiber quantification (AFQ) was applied to generate bundle profiles along primary white matter fiber tracts. Diffusion tensor images (DTI) metrics and 100 nodes of white matter fiber tracts between groups were compared. Multiple regression analysis was used to analyze the relationship between DTI metrics and cognitive scores and CSVD burden scores. For fiber-wise and node-wise, DTI metrics in some commissural and association fibers were increased in T2DM. Some white matter fiber tracts DTI metrics were independent predictors of cognitive scores and CSVD burden scores. White matter fiber tracts damage in patients with T2DM may be characterized in specific location, especially commissural and association fibers. Aberrational specific white matter fiber tracts are associated with visuospatial function and CSVD burden.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Diabetes Mellitus Tipo 2/complicações , Cognição , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações
10.
Brain Imaging Behav ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170304

RESUMO

We aimed to explore the subregional atrophy patterns of the amygdala and hippocampus in Parkinson's disease (PD) with depression and their correlation with the severity of the depressive symptom. MRI scans were obtained for 34 depressed PD patients (DPD), 22 nondepressed PD patients (NDPD), and 28 healthy controls (HC). Amygdala and hippocampal subregions were automatically segmented, and the intergroup volume difference was compared. The relationships between the volumes of the subregions and depression severity were investigated. Logistic analysis and Receiver operator characteristic curve were used to find independent predictors of DPD. Compared with the HC group, atrophy of the bilateral lateral nucleus, left accessory basal nucleus, right cortical nucleus, right central nucleus, and right medial nucleus subregions of the amygdala were visible in the DPD group, while the right lateral nucleus subregion of the amygdala was smaller in the DPD group than in the NDPD group. The DPD group showed significant atrophy in the left molecular layer, left GC-DG, left CA3, and left CA4 subregions compared with the HC group for hippocampal subregion volumes. Also, the right lateral nuclei volume and disease duration were independent predictors of DPD. To sum up, DPD patients showed atrophy in multiple amygdala subregions and left asymmetric hippocampal subregions. The decreased amygdala and hippocampal subregion volumes were correlated with the severity of depressive symptoms. The volume of right lateral nuclei and disease duration could be used as a biomarker to detect DPD.

11.
Anal Bioanal Chem ; 416(1): 55-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872414

RESUMO

As the lack of plants can affect the energy operation of the entire ecosystem, monitoring and improving the health status of plants is crucial. However, ordinary biosensing platforms lack accuracy and timeliness in monitoring plant growth status. In addition, the prevention and control of plant diseases often involve spraying and administering drugs, which is inefficient and prone to pollution. Microneedles have unique dimensions and shapes, and they have significant advantages as biosensors in the fields of sensing, detection, and drug delivery. Recent evidence suggests that microneedle biosensors can become effective tools for plant diagnosis and treatment. In this review, the comprehensive development of the application of microneedle biosensors in the field of plants is introduced, as well as their manufacturing processes and sensing and detection functions. Furthermore, the application of microneedle biosensors in this field is discussed, and future development directions are proposed.


Assuntos
Técnicas Biossensoriais , Ecossistema , Agulhas , Sistemas de Liberação de Medicamentos/métodos , Técnicas Biossensoriais/métodos
12.
Int J Biol Macromol ; 259(Pt 1): 129066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158062

RESUMO

Polysaccharide-based antibacterial agents have received tremendous attention for the facile fabrication, low toxicity, and high compatibility with carbohydrate polymers. However, the antimicrobial mechanism, activity, and cytotoxicity for human-contact paperboards of oxidized starch (OST) with high carboxyl content, has not been explored. Herein, OST-27- 75 with 27- 75 wt% carboxyl contents were fabricated by H2O2 and coated on paperboards. Strikingly, OST-55 coating layer (16 g/m2) did not exfoliate from paperboard and possessed the rapid-sustainable antibacterial performance against Staphylococcus aureus and Escherichia coli. The soluble and insoluble components of OST-55 (OST55-S: OST55-IS mass ratio = 1: 2.1) presented different antimicrobial features and herein they were characterized by GC-MS, FT-IR, H-NMR, XRD, bacteriostatic activities, biofilm formation inhibition and intracellular constituent leakage to survey the antibacterial mechanism. The results revealed OST55-S displayed an amorphous structure and possessed superior antibacterial activity against S. aureus (MIC = 4 mg/mL) and E. coli (MIC = 8 mg/mL). Distinctively, OST55-S could rapidly ionize [H+] like "missile boats" from small molecule saccharides, while OST55-IS polyelectrolyte could continuously and slowly release for [H+] like an "aircraft carrier" to inhibit biofilm formation and disrupt cell structure. Eventually, the "Missile boats-Aircraft carrier" strategy provided a green methodology to fabricate polymeric antibacterial agents and expanded the use of cellulose-based materials.


Assuntos
Staphylococcus aureus , Amido , Humanos , Amido/farmacologia , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Peróxido de Hidrogênio , Navios , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros , Testes de Sensibilidade Microbiana
13.
Anal Methods ; 15(43): 5711-5730, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873722

RESUMO

Biosensors have attracted a considerable attention in recent years due to their enormous potential to provide insights into the physical condition of individuals. However, the widespread use of biosensors has experienced difficulties regarding the stability of the biological response and the poor miniaturization and portability of biosensors. Hence, there is an urgent need for more reliable biosensor devices. Microneedle (MN) technology has become a revolutionary approach to biosensing strategies, setting new horizons for improving existing biosensors. MN-based biosensors allow for painless injection, and in situ extraction or monitoring. However, the accuracy and practicality of detection need to be improved. This review begins by discussing the classification of MNs, manufacturing methods and other design parameters to develop a more accurate MN-based detection sensing system. Herein, we categorize and analyze the energy supply of wearable biosensors. Specifically, we describe the detection methods of MN biosensors, such as electrochemical, optical, nucleic acid recognition and immunoassays, and how MNs can be combined with these methods to detect biomarkers. Furthermore, we provide a detailed overview of the latest applications (drug release, drug detection, etc.). The MN-based biosensors are followed by a summary of key challenges and opportunities in the field.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Biomarcadores , Agulhas
14.
Front Neurosci ; 17: 1202538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817799

RESUMO

To explore the correlation between the number of lenticulostriate arteries (LSAs) and the white matter features in cerebral small vessel diseases (CSVD) by 3T magnetic resonance imaging (MRI). Seventy-one patients with diagnoses of CSVD were prospectively enrolled to undergo 3T MRI examination, including high-resolution vascular wall imaging (VWI) and diffusion tensor imaging (DTI). The LSAs were observed and counted on VWI, and the patients were divided into three groups according to the LSA counts. The presence of white matter hyperintensities (WMHs), lacunes, cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVS) was assessed in each patient, and a composite CSVD score was calculated. Periventricular and deep white matter hyperintensity (PVWMH, DWMH) volume ratios were obtained based on automatic segmentation. Fractional anisotropy (FA) and mean diffusivity (MD) were processed by using tract-based spatial statistics (TBSS) analysis. These parameters were compared among the three groups. Correlations between the LSA counts and white matter features were also analyzed. There were differences in WMHs (P = 0.001), CMBs (P < 0.001), EPVS (P = 0.017), composite CSVD scores (P < 0.001), PVWMH volume ratios (P = 0.001), DWMH volume ratios (P < 0.001), global FA (P = 0.001), and global MD (P = 0.002) among the three groups. There were correlations between the LSA counts and WMHs (r = -0.45, P < 0.001), CMBs (r = -0.44, P < 0.001), EPVS (r = -0.28, P = 0.020), the composite CSVD score (r = -0.52, P < 0.001), DWMH volume ratio (r = -0.47, P < 0.001), PWMH volume ratio (r = -0.34, P = 0.004), global FA (r = 0.36, P = 0.002), and global MD (r = -0.33, P = 0.005). Diabetes mellitus (OR 3.36, 95% CI 1.06-10.63; P = 0.039) and increased DWMH volume ratios (OR 1.04, 95% CI 1.00-1.08; P = 0.048) were independent risk factors for a decrease in LSA counts. TBSS analysis showed differences among the three groups in global FA and MD after adjusting for age and sex (P < 0.05). The LSA counts was associated with white matter microstructure changes in CSVD and has the potential to represent the extent of subcortical microvascular damage in CSVD patients.

15.
Carbohydr Polym ; 322: 121342, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839847

RESUMO

The fabrication of reusable natural polysaccharide sponges with nanoscale dispersed photocatalysts to achieve robust photocatalytic efficiency is desirable yet challenging. Herein, inspired by the nesting behavior when fishing, we designed reusable starch sponge with chemically anchored nano-ZnO into carboxylated starch matrix by thermoplastic interfacial reactions and solvent replacement for absorbing and photodegrading methylene blue (MB) in situ. The plasticization and interfacial reactions promoted a simultaneous increase in the reactivity of the starch hydroxyl/carboxyl groups and the specific surface area of ZnO. Meanwhile, the crosslinked networks of starch sponge could be adjusted by varying the ZnO and carboxylic groups contents. The results of photodegradation experiments revealed the recyclable closed-loop process of attraction-trapping-photodegradation of MB was successfully realized, achieving the effect of killing three birds with one stone. The reusable starch sponge with homogeneous dispersion of nano-ZnO by constructing three-dimensional porous channels possessed the high enrichment capacity and the remarkable photocatalysis efficiency with 150 mg/L ZnO. Under UV irradiation, the starch sponge degraded 97 % of MB with 1.67 × 10-3 min-1 photodegradation rate constant even after five cycles, which exceeded most existing photocatalytic systems. Overall, the reusable starch sponge with adjustable structure provided new insights for multifunctional bio-based photocatalyst loading systems.

16.
Front Psychiatry ; 14: 1237113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674550

RESUMO

Objective: To explore the specific alterations of white matter microstructure in children with attention-deficit/hyperactivity disorder (ADHD) by automated fiber quantification (AFQ) and tract-based spatial statistics (TBSS), and to analyze the correlation between white matter abnormality and impairment of executive function. Methods: In this prospective study, a total of twenty-seven patients diagnosed with ADHD (20 males, 7 females; mean age of 8.89 ± 1.67 years) and twenty-two healthy control (HC) individuals (11 males, 11 females, mean age of 9.82 ± 2.13 years) were included. All participants were scanned with diffusion kurtosis imaging (DKI) and assessed for executive functions. AFQ and TBSS analysis methods were used to investigate the white matter fiber impairment of ADHD patients, respectively. Axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA) of 17 fiber properties were calculated using the AFQ. The mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), mean diffusivity (MDDKI), axial diffusivity (ADDKI), radial diffusivity (RDDKI) and fractional anisotropy (FADKI) of DKI and AD, RD, MD, and FA of diffusion tensor imaging (DTI) assessed the integrity of the white matter based on TBSS. Partial correlation analyses were conducted to evaluate the correlation between white matter abnormalities and clinical test scores in ADHD while taking age, gender, and education years into account. The analyses were all family-wise error rate (FWE) corrected. Results: ADHD patients performed worse on the Behavior Rating Inventory of Executive Function (BRIEF) test (p < 0.05). Minor variances existed in gender and age between ADHD and HC, but these variances did not yield statistically significant distinctions. There were no significant differences in TBSS for DKI and DTI parameters (p > 0.05, TFCE-corrected). Compared to HC volunteers, the mean AD value of right cingulum bundle (CB_R) fiber tract showed a significantly higher level in ADHD patients following the correction of FWE. As a result of the point-wise comparison between groups, significant alterations (FWE correction, p < 0.05) were mainly located in AD (nodes 36-38, nodes 83-97) and MD (nodes 92-95) of CB_R. There was no significant correlation between white matter diffusion parameters and clinical test scores in ADHD while taking age, gender, and education years into account. Conclusion: The AFQ method can detect ADHD white matter abnormalities in a specific location with greater sensitivity, and the CB_R played a critical role. Our findings may be helpful in further studying the relationship between focal white matter abnormalities and ADHD.

17.
Analyst ; 148(19): 4591-4615, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37664954

RESUMO

Possessing the attractive advantages of moderate invasiveness and high compliance, there is no doubt that microneedles (MNs) have been a gradually rising star in the field of medicine. Recent evidence implies that microelectronics technology based on microcircuits, microelectrodes and other microelectronic elements combined with MNs can realize mild electrical stimulation, drug release and various types of electrical sensing detection. In addition, the combination of microfluidics technology and MNs makes it possible to transport fluid drugs and access a small quantity of body fluids which have shown significant untapped potential for a wide range of diagnostics. Of particular note is that combining both technologies and MNs is more difficult, but is promising to build a modern healthcare platform with more comprehensive functions. This review introduces the properties of MNs that can form integrated systems with microelectronics and microfluidics, and summarizes these systems and their applications. Furthermore, the future challenges and perspectives of the integrated systems are conclusively proposed.


Assuntos
Líquidos Corporais , Microfluídica , Liberação Controlada de Fármacos , Estimulação Elétrica , Eletricidade
18.
Macromol Biosci ; 23(11): e2300141, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37409519

RESUMO

Microneedles are a promising transdermal drug delivery system that has the advantages of minimal invasiveness, painlessness, and on-demand drug delivery compared with commonly used medical techniques. Natural resources are developed as next-generation materials for microneedles with varying degrees of success. Among them, silk fibroin is a natural polymer obtained from silkworms with good biocompatibility, high hardness, and controllable biodegradability. These properties provide many opportunities for integrating silk fibroin with implantable microneedle systems. In this review, the research progress of silk fibroin microneedles in recent years is summarized, including their materials, processing technology, detection, drug release methods, and applications. Besides, the research and development of silk fibroin in a multidimensional way are analyzed. Finally, it is expected that silk fibroin microneedles will have excellent development prospects in various fields.


Assuntos
Bombyx , Fibroínas , Animais , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos/métodos , Atenção à Saúde
19.
Anal Chem ; 95(22): 8395-8410, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218627

RESUMO

As wearable health devices have the ability of intelligent monitoring, they are becoming cutting-edge technology in medical and health fields. However, the simplification of functions limits their further development. In addition, soft robotics with actuation functions can achieve therapeutic effects by doing external work, but their monitoring function is not sufficiently developed. The efficient integration of the two can guide future development. The functional integration of actuation and sensing can not only monitor the human body and surrounding environment but also realize actuation and assistance. Recent evidence shows that emerging wearable soft robotics can become the future of personalized medical treatment. In this Perspective, the comprehensive development in the field of actuators for simple structure soft robotics and the field of wearable application sensors are introduced, as well as their manufacturing processes and various potential medical applications. Furthermore, the challenges faced in this field are discussed, and future development directions are proposed.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos
20.
Front Neurol ; 14: 956975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864921

RESUMO

Purpose: To investigate the value of clinical-radiomics analysis based on T1-weighted imaging (T1WI) for predicting acute bilirubin encephalopathy (ABE) in neonates. Methods: In this retrospective study, sixty-one neonates with clinically confirmed ABE and 50 healthy control neonates were recruited between October 2014 and March 2019. Two radiologists' visual diagnoses for all subjects were independently based on T1WI. Eleven clinical and 216 radiomics features were obtained and analyzed. Seventy percent of samples were randomly selected as the training group and were used to establish a clinical-radiomics model to predict ABE; the remaining samples were used to validate the performance of the models. The discrimination performance was assessed by receiver operating characteristic (ROC) curve analysis. Results: Seventy-eight neonates were selected for training (median age, 9 days; interquartile range, 7-20 days; 49 males) and 33 neonates for validation (median age, 10 days; interquartile range, 6-13 days; 24 males). Two clinical features and ten radiomics features were finally selected to construct the clinical-radiomics model. In the training group, the area under the ROC curve (AUC) was 0.90 (sensitivity: 0.814; specificity: 0.914); in the validation group, the AUC was 0.93 (sensitivity: 0.944; specificity: 0.800). The AUCs of two radiologists' and the radiologists' final visual diagnosis results based on T1WI were 0.57, 0.63, and 0.66, respectively. The discriminative performance of the clinical-radiomics model in the training and validation groups was increased compared to the radiologists' visual diagnosis (P < 0.001). Conclusions: A combined clinical-radiomics model based on T1WI has the potential to predict ABE. The application of the nomogram could potentially provide a visualized and precise clinical support tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...