Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 190: 108831, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38936065

RESUMO

Antibiotic resistance in soil introduced by organic fertilizer application pose a globally recognized threat to human health. Insect organic fertilizer may be a promising alternative due to its low antibiotic resistance. However, it is not yet clear how to regulate soil microbes to reduce antibiotic resistance in organic fertilizer agricultural application. In this study, we investigated soil microbes and antibiotic resistome under black soldier fly organic fertilizer (BOF) application in pot and field systems. Our study shows that BOF could stimulate ARB (antibiotic resistant - bacteria) - suppressive Bacillaceae in the soil microbiome and reduce antibiotic resistome. The carbohydrate transport and metabolism pathway of soil Bacillaceae was strengthened, which accelerated the synthesis and transport of polysaccharides to form biofilm to antagonistic soil ARB, and thus reduced the antibiotic resistance. We further tested the ARB - suppressive Bacillus spp. in a microcosm assay, which resulted in a significant decrease in the presence of ARGs and ARB together with higher abundance in key biofilm formation gene (epsA). This knowledge might help to the development of more efficient bio-fertilizers aimed at mitigating soil antibiotic resistance and enhancing soil health, in particular, under the requirements of global "One Health".

2.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832484

RESUMO

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Assuntos
Dípteros , Esterco , Animais , Larva/genética , Esterco/análise , Galinhas/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Dípteros/genética , Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Antibacterianos/farmacologia
3.
Sci Total Environ ; 879: 163065, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966826

RESUMO

The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.


Assuntos
Compostagem , Dípteros , Humanos , Suínos , Animais , Larva , Esterco/microbiologia , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos
4.
BMC Infect Dis ; 20(1): 45, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941459

RESUMO

BACKGROUND: Acinetobacter baumannii is a gram-negative aerobic bacillus that is commonly causes of hospital-acquired infections. Community-acquired pneumonia caused by Acinetobacter baumannii (CAP-Ab) is rare but fatal if diagnosis and treatment are delayed. Conventional culture of clinical specimens is the main method for clinical diagnosis of A. baumannii infections which may suffer from limited positive rate and is time consuming. Timely and precise diagnosis of CAP-Ab remains challenging. CASE PRESENTATION: A 66-year-old man with 24 h history of acute fever and dyspnea was admitted to our hospital. He was diagnosed as severe community acquired pneumonia (CAP), septic shock, respiratory failure and acute kidney injury. Next-generation sequencing (NGS) was performed on the patient's sputum and blood, which identified numerous A. baumannii nucleotide sequences in the sample of sputum and led to the rapid diagnosis and treatment of community acquired pneumonia caused by A. baumannii. This result was confirmed by subsequent sputum culture. CONCLUSIONS: This case described that the successful application of the next generation sequencing assisting the speedy diagnosis of A. baumannii infection provides a new idea for the timely diagnosis of CAP-Ab and highlights that NGS is a promising tool in rapid etiological diagnosis of acute and severe infectious diseases.


Assuntos
Infecções por Acinetobacter/diagnóstico , Acinetobacter baumannii/genética , Infecções Comunitárias Adquiridas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Pneumonia Bacteriana/diagnóstico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Injúria Renal Aguda/complicações , Idoso , Antibacterianos/uso terapêutico , China , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecção Hospitalar , Dispneia/complicações , Febre/complicações , Hospitalização , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/tratamento farmacológico , Insuficiência Respiratória/complicações , Choque Séptico/complicações , Escarro/microbiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...