Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 9(34): eadd7399, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611111

RESUMO

Regulatory T (Treg) cells and cancer-associated fibroblasts (CAFs) jointly promote tumor immune tolerance and tumorigenesis. The molecular apparatus that drives Treg cell and CAF coordination in the tumor microenvironment (TME) remains elusive. Interleukin 33 (IL-33) has been shown to enhance fibrosis and IL1RL1+ Treg cell accumulation during tumorigenesis and tissue repair. We demonstrated that IL1RL1 signaling in Treg cells greatly dampened the antitumor activity of both IL-33 and PD-1 blockade. Whole tumor single-cell RNA sequencing (scRNA-seq) analysis and blockade experiments revealed that the amphiregulin (AREG)-epidermal growth factor receptor (EGFR) axis mediated cross-talk between IL1RL1+ Treg cells and CAFs. We further demonstrated that the AREG/EGFR axis enables Treg cells to promote a profibrotic and immunosuppressive functional state of CAFs. Moreover, AREG mAbs and IL-33 concertedly inhibited tumor growth. Our study reveals a previously unidentified AREG/EGFR-mediated Treg/CAF coupling that controls the bifurcation of fibroblast functional states and is a critical barrier for cancer immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Linfócitos T Reguladores , Humanos , Anfirregulina/genética , Interleucina-33 , Carcinogênese , Transformação Celular Neoplásica , Receptores ErbB , Microambiente Tumoral , Proteína 1 Semelhante a Receptor de Interleucina-1
2.
Cancer Res Commun ; 3(8): 1460-1472, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37546701

RESUMO

T cell-stimulating cytokines and immune checkpoint inhibitors (ICI) are an ideal combination for increasing response rates of cancer immunotherapy. However, the results of clinical trials have not been satisfying. It is important to understand the mechanism of synergy between these two therapeutic modalities. Here, through integrated analysis of multiple single-cell RNA sequencing (scRNA-seq) datasets of human tumor-infiltrating immune cells, we demonstrate that IL21 is produced by tumor-associated T follicular helper cells and hyperactivated/exhausted CXCL13+CD4+ T cells in the human tumor microenvironment (TME). In the mouse model, the hyperactivated/exhausted CD4+ T cell-derived IL21 enhances the helper function of CD4+ T cells that boost CD8+ T cell-mediated immune responses during PD-1 blockade immunotherapy. In addition, we demonstrated that IL21's antitumor activity did not require T-cell trafficking. Using scRNA-seq analysis of the whole tumor-infiltrating immune cells, we demonstrated that IL21 treatment in combination with anti-PD-1 blockade synergistically drives tumor antigen-specific CD8+ T cells to undergo clonal expansion and differentiate toward the hyperactive/exhausted functional state in the TME. In addition, IL21 treatment and anti-PD-1 blockade synergistically promote dendritic cell (DC) activation and maturation to mature DC as well as monocyte to type 1 macrophage (M1) differentiation in the TME. Furthermore, the combined treatment reprograms the immune cellular network by reshaping cell-cell communication in the TME. Our study establishes unique mechanisms of synergy between IL21 and PD-1-based ICI in the TME through the coordinated promotion of type 1 immune responses. Significance: This study reveals how cytokine and checkpoint inhibitor therapy can be combined to increase the efficacy of cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Microambiente Tumoral , Animais , Camundongos , Humanos , Interleucinas/farmacologia , Imunoterapia/métodos , Citocinas
3.
Semin Cancer Biol ; 86(Pt 2): 280-295, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35580824

RESUMO

The IL-1 family of cytokines consists of IL-1α, IL-1ß, IL-18, IL-33, IL-36α, IL-36ß, and IL-36γ. These proteins form four signaling receptor complexes: the IL-1 receptor (IL-1R1 and IL-1RAcP), the IL-18 receptor (IL-18Rα and IL-18Rß), the IL-33 receptor (ST2 and IL-1RAcP), and the IL-36 receptor (IL-1Rrp2 and IL-1RAcP). The formation of receptor complexes is also regulated by various antagonistic molecules and decoy receptors. The IL-1 family cytokines are induced and secreted by both innate immune cells and tissue cells upon infection and tissue damage. Thus, they play a diverse role in mediating both innate and adaptive immune responses. During tumor development and cancer treatment, the expression of the IL-1 gene family is differentially regulated in tumor cells, tissue stromal cells, and immune cells in a stage specific and tissue specific manner. Like other cytokines, the IL-1 family proteins have pleiotropic functions that are dependent on diverse arrays of target cells. As a result, they play a complex role in tumorigenesis, cancer metastasis, immune suppression, and cancer immune surveillance. Here, we focus on reviewing experimental evidence demonstrating how members of the IL-1 family influence cancer development at the cellular and molecular level. The unique mechanisms of this group of cytokines make them attractive targets for new cancer therapy.


Assuntos
Proteína Acessória do Receptor de Interleucina-1 , Interleucina-33 , Humanos , Interleucina-33/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Carcinogênese/genética
4.
Front Cell Dev Biol ; 9: 779865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869384

RESUMO

In the era of immune checkpoint blockade cancer therapy, cytokines have become an attractive immune therapeutics to increase response rates. Interleukin 21 (IL21) as a single agent has been evaluated for cancer treatment with good clinical efficacy. However, the clinical application of IL21 is limited by a short half-life and concern about potential immune suppressive effect on dendritic cells. Here, we examined the antitumor function of a half-life extended IL21 alone and in combination with PD-1 blockade using preclinical mouse tumor models. We also determined the immune mechanisms of combination therapy. We found that combination therapy additively inhibited the growth of mouse tumors by increasing the effector function of type 1 lymphocytes. Combination therapy also increased the fraction of type 1 dendritic cells (DC1s) and M1 macrophages in the tumor microenvironment (TME). However, combination therapy also induced immune regulatory mechanisms, including the checkpoint molecules Tim-3, Lag-3, and CD39, as well as myeloid derived suppressor cells (MDSC). This study reveals the mechanisms of IL21/PD-1 cooperation and shed light on rational design of novel combination cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...