Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 31(5): 1905-18, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289200

RESUMO

It is widely held that the spatial processing functions underlying rodent navigation are similar to those encoding human episodic memory (Doeller et al., 2010). Spatial and nonspatial information are provided by all senses including vision. It has been suggested that visual inputs are fed to the navigational network in cortex and hippocampus through dorsal and ventral intracortical streams (Whitlock et al., 2008), but this has not been shown directly in rodents. We have used cytoarchitectonic and chemoarchitectonic markers, topographic mapping of receptive fields, and pathway tracing to determine in mouse visual cortex whether the lateromedial field (LM) and the anterolateral field (AL), which are the principal targets of primary visual cortex (V1) (Wang and Burkhalter, 2007) specialized for processing nonspatial and spatial visual information (Gao et al., 2006), are distinct areas with diverse connections. We have found that the LM/AL border coincides with a change in type 2 muscarinic acetylcholine receptor expression in layer 4 and with the representation of the lower visual field periphery. Our quantitative analyses also show that LM strongly projects to temporal cortex as well as the lateral entorhinal cortex, which has weak spatial selectivity (Hargreaves et al., 2005). In contrast, AL has stronger connections with posterior parietal cortex, motor cortex, and the spatially selective medial entorhinal cortex (Haftig et al., 2005). These results support the notion that LM and AL are architecturally, topographically, and connectionally distinct areas of extrastriate visual cortex and that they are gateways for ventral and dorsal streams.


Assuntos
Vias Neurais/anatomia & histologia , Receptor Muscarínico M2/metabolismo , Córtex Visual/anatomia & histologia , Animais , Bisbenzimidazol/administração & dosagem , Córtex Entorrinal/anatomia & histologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Córtex Motor/anatomia & histologia , Lobo Parietal/anatomia & histologia , Lobo Temporal/anatomia & histologia
2.
J Neurosci ; 30(17): 5912-26, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20427651

RESUMO

It is generally accepted that in mammals visual information is sent to the brain along functionally specialized parallel pathways, but whether the mouse visual system uses similar processing strategies is not known. It is important to resolve this issue because the mouse brain provides a tractable system for developing a cellular and molecular understanding of disorders affecting spatiotemporal visual processing. We have used single-unit recordings in mouse primary visual cortex to study whether individual neurons are more sensitive to one set of sensory cues than another. Our quantitative analyses show that neurons with short response latencies have low spatial acuity and high sensitivity to contrast, temporal frequency, and speed, whereas neurons with long latencies have high spatial acuity, low sensitivities to contrast, temporal frequency, and speed. These correlations suggest that neurons in mouse V1 receive inputs from a weighted combination of parallel afferent pathways with distinct spatiotemporal sensitivities.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Percepção de Movimento/fisiologia , Estimulação Luminosa , Fatores de Tempo , Vias Visuais/fisiologia
3.
J Neurosci Methods ; 159(2): 268-76, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16945423

RESUMO

From the moment the mouse model took center stage for studies of cortical arealization and map formation, there was an urgent need for methods to identify areal borders in the living animal. The need was met in part by intrinsic optical signal imaging, which has been successfully applied to map topographic representations in primary visual, auditory and somatosensory cortex. However, the challenge remains to register these maps to the underlying structure. This is especially important for studies of the mouse brain in which cortical areas are often only a few hundred microns across. Here, we show that in visual cortex neuronal tracing with fluororuby and fluoroemerald can be used for transcranial imaging through the intact skull of callosal connections from the opposite side of the brain, and for mapping of topographic striate-extrastriate cortical pathways in living mice. Because callosal connections are important landmarks for cortical areas, the new method will allow registration of functional maps to underlying structures and facilitate targeted single-unit recordings in identified cortical areas.


Assuntos
Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Corpo Caloso/citologia , Corpo Caloso/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Bisbenzimidazol , Dextranos , Eletrofisiologia , Potenciais Evocados Visuais , Fluoresceínas , Corantes Fluorescentes , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Rodaminas , Técnicas Estereotáxicas , Vias Visuais
5.
Neuroreport ; 16(13): 1529-33, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16110284

RESUMO

We have investigated the direct excitatory effects of hypocretin-1 on acutely isolated prefrontal cortical pyramidal neurons and explored the signaling mechanisms of these actions. Puff application of hypocretin-1 caused an excitation in the recorded neurons. These effects of hypocretin-1 were abolished by a phospholipase C inhibitor D609, demonstrating that phospholipase C mediates the actions of hypocretin-1. A specific protein kinase C inhibitor, bisindolylmaleimide II, blocked the excitatory actions of hypocretin-1, suggesting that protein kinase C plays a key role. Finally, protein kinase A inhibitor applied intracellularly did not affect the responses. These results indicate that hypocretin-1 excites prefrontal neurons by activation of phospholipase C and protein kinase C pathways, but not protein kinase A.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas In Vitro , Orexinas , Técnicas de Patch-Clamp , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Fosfolipases Tipo C/metabolismo
6.
J Neurophysiol ; 94(2): 1199-211, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16061490

RESUMO

In big brown bats, tone-specific plastic changes [best frequency (BF) shifts] of cortical and collicular neurons can be evoked by auditory fear conditioning, repetitive acoustic stimuli or cortical electric stimulation. It has been shown that acetylcholine (ACh) plays an important role in evoking large long-term cortical BF shifts. However, the role of N-methyl-d-aspartate (NMDA) receptors in evoking BF shifts has not yet been studied. We found 1) NMDA applied to the auditory cortex (AC) or inferior colliculus (IC) augmented the auditory responses, as ACh did, whereas 2-amino-5-phosphovalerate (APV), an antagonist of NMDA receptors, reduced the auditory responses, as atropine did; 2) although any of these four drugs did not evoke BF shifts, they influenced the development of the long-term cortical and short-term collicular BF shifts elicited by conditioning; 3) like ACh, NMDA augmented the cortical and collicular BF shifts regardless of whether it was applied to the AC or IC; 4) endogenous ACh of the AC and IC is necessary to produce the long-term cortical and short-term collicular BF shifts; 5) blockade of collicular NMDA receptors by APV abolished the development of the collicular BF shift and made the cortical BF shift small and short-term; 6) blockade of cortical NMDA receptors by APV reduced the cortical and collicular BF shifts and made the cortical BF shift short-term; and 7) conditioning with NMDA + atropine applied to the AC evoked the small, short-term cortical BF shift, whereas conditioning with APV + ACh applied to the AC evoked the small, but long-term cortical BF shift.


Assuntos
Vias Auditivas/efeitos dos fármacos , Quirópteros/fisiologia , Agonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/farmacologia , Medo/fisiologia , N-Metilaspartato , Plasticidade Neuronal/efeitos dos fármacos , Acetilcolina/farmacologia , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Atropina/farmacologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Interações Medicamentosas , Estimulação Elétrica/efeitos adversos , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/fisiologia , N-Metilaspartato/agonistas , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/farmacologia , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos da radiação , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...