Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5558, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977672

RESUMO

Deletion of the maternal UBE3A allele causes Angelman syndrome (AS); because paternal UBE3A is epigenetically silenced by a long non-coding antisense (UBE3A-ATS) in neurons, this nearly eliminates UBE3A protein in the brain. Reactivating paternal UBE3A holds promise for treating AS. We previously showed topoisomerase inhibitors can reactivate paternal UBE3A, but their therapeutic challenges prompted our search for small molecule unsilencers with a different mechanism of action. Here, we found that (S)-PHA533533 acts through a novel mechanism to significantly increase paternal Ube3a mRNA and UBE3A protein levels while downregulating Ube3a-ATS in primary neurons derived from AS model mice. Furthermore, peripheral delivery of (S)-PHA533533 in AS model mice induces widespread neuronal UBE3A expression. Finally, we show that (S)-PHA533533 unsilences paternal UBE3A in AS patient-derived neurons, highlighting its translational potential. Our findings provide a lead for developing a small molecule treatment for AS that could be safe, non-invasively delivered, and capable of brain-wide unsilencing of paternal UBE3A.


Assuntos
Síndrome de Angelman , Modelos Animais de Doenças , Neurônios , Ubiquitina-Proteína Ligases , Síndrome de Angelman/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Camundongos , Neurônios/metabolismo , Humanos , Masculino , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Encéfalo/metabolismo
2.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535852

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by monoallelic mutation or deletion in the transcription factor 4 (TCF4) gene. Individuals with PTHS typically present in the first year of life with developmental delay and exhibit intellectual disability, lack of speech, and motor incoordination. There are no effective treatments available for PTHS, but the root cause of the disorder, TCF4 haploinsufficiency, suggests that it could be treated by normalizing TCF4 gene expression. Here, we performed proof-of-concept viral gene therapy experiments using a conditional Tcf4 mouse model of PTHS and found that postnatally reinstating Tcf4 expression in neurons improved anxiety-like behavior, activity levels, innate behaviors, and memory. Postnatal reinstatement also partially corrected EEG abnormalities, which we characterized here for the first time, and the expression of key TCF4-regulated genes. Our results support a genetic normalization approach as a treatment strategy for PTHS, and possibly other TCF4-linked disorders.


Assuntos
Deficiência Intelectual , Fator de Transcrição 4/metabolismo , Animais , Modelos Animais de Doenças , Fácies , Hiperventilação , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Camundongos , Fenótipo , Fator de Transcrição 4/genética
3.
J Chem Phys ; 147(14): 144301, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29031273

RESUMO

Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN⋯HF post-reaction potential energy well of ∼10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH2CN rotation, and CH2CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH3CN → HF + CH2CN resemble those for other reactions. A detailed discussion is given of possible origins of the difference between the simulation and experimental energy partitioning dynamics for F + CH3CN → HF + CH2CN. The F + CH3CN reaction also forms the CH3C(F)N intermediate, in which the F-atom adds to the C≡N bond. However, this intermediate and F⋯CH3CN and CH3CN⋯F van der Waals complexes are not expected to affect the F + CH3CN → HF + CH2CN product energy partitioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...