Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 166: 107411, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738896

RESUMO

Mild cognitive impairment (MCI) is a critical transitional stage between normal cognition and dementia, for which early detection is crucial for timely intervention. Retinal imaging has been shown as a promising potential biomarker for MCI. This study aimed to develop a dual-stream attention neural network to classify individuals with MCI based on multi-modal retinal images. Our approach incorporated a cross-modality fusion technique, a variable scale dense residual model, and a multi-classifier mechanism within the dual-stream network. The model utilized a residual module to extract image features and employed a multi-level feature aggregation method to capture complex context information. Self-attention and cross-attention modules were utilized at each convolutional layer to fuse features from optical coherence tomography (OCT) and fundus modalities, resulting in multiple output losses. The neural network was applied to classify individuals with MCI, Alzheimer's disease, and control participants with normal cognition. Through fine-tuning the pre-trained model, we classified community-dwelling participants into two groups based on cognitive impairment test scores. To identify retinal imaging biomarkers associated with accurate prediction, we used the Gradient-weighted Class Activation Mapping technique. The proposed method achieved high precision rates of 84.96% and 80.90% in classifying MCI and positive test scores for cognitive impairment, respectively. Notably, changes in the optic nerve head on fundus photographs or OCT images among patients with MCI were not used to discriminate patients from the control group. These findings demonstrate the potential of our approach in identifying individuals with MCI and emphasize the significance of retinal imaging for early detection of cognitive impairment.

2.
Biomed Opt Express ; 14(5): 1848-1861, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37206122

RESUMO

The tear fluid reservoir (TFR) under the sclera lens is a unique characteristic providing optical neutralization of any aberrations from corneal irregularities. Anterior segment optical coherence tomography (AS-OCT) has become an important imaging modality for sclera lens fitting and visual rehabilitation therapy in both optometry and ophthalmology. Herein, we aimed to investigate whether deep learning can be used to segment the TFR from healthy and keratoconus eyes, with irregular corneal surfaces, in OCT images. Using AS-OCT, a dataset of 31850 images from 52 healthy and 46 keratoconus eyes, during sclera lens wear, was obtained and labeled with our previously developed algorithm of semi-automatic segmentation. A custom-improved U-shape network architecture with a full-range multi-scale feature-enhanced module (FMFE-Unet) was designed and trained. A hybrid loss function was designed to focus training on the TFR, to tackle the class imbalance problem. The experiments on our database showed an IoU, precision, specificity, and recall of 0.9426, 0.9678, 0.9965, and 0.9731, respectively. Furthermore, FMFE-Unet was found to outperform the other two state-of-the-art methods and ablation models, suggesting its strength in segmenting the TFR under the sclera lens depicted on OCT images. The application of deep learning for TFR segmentation in OCT images provides a powerful tool to assess changes in the dynamic tear film under the sclera lens, improving the efficiency and accuracy of lens fitting, and thus supporting the promotion of sclera lenses in clinical practice.

3.
Ther Adv Chronic Dis ; 14: 20406223231159616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938499

RESUMO

Background: The ciliary muscle plays a role in changing the shape of the crystalline lens to maintain the clear retinal image during near work. Studying the dynamic changes of the ciliary muscle during accommodation is necessary for understanding the mechanism of presbyopia. Optical coherence tomography (OCT) has been frequently used to image the ciliary muscle and its changes during accommodation in vivo. However, the segmentation process is cumbersome and time-consuming due to the large image data sets and the impact of low imaging quality. Objectives: This study aimed to establish a fully automatic method for segmenting and quantifying the ciliary muscle on the basis of optical coherence tomography (OCT) images. Design: A perspective cross-sectional study. Methods: In this study, 3500 signed images were used to develop a deep learning system. A novel deep learning algorithm was created from the widely used U-net and a full-resolution residual network to realize automatic segmentation and quantification of the ciliary muscle. Finally, the algorithm-predicted results and manual annotation were compared. Results: For segmentation performed by the system, the total mean pixel value difference (PVD) was 1.12, and the Dice coefficient, intersection over union (IoU), and sensitivity values were 93.8%, 88.7%, and 93.9%, respectively. The performance of the system was comparable with that of experienced specialists. The system could also successfully segment ciliary muscle images and quantify ciliary muscle thickness changes during accommodation. Conclusion: We developed an automatic segmentation framework for the ciliary muscle that can be used to analyze the morphological parameters of the ciliary muscle and its dynamic changes during accommodation.

4.
Cornea ; 41(9): 1158-1165, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543584

RESUMO

PURPOSE: We aimed to investigate the usefulness of Zernike coefficients (ZCs) for distinguishing subclinical keratoconus (KC) from normal corneas and to evaluate the goodness of detection of the entire corneal topography and tomography characteristics with ZCs as a screening feature input set of artificial neural networks. METHODS: This retrospective study was conducted at the Affiliated Eye Hospital of Wenzhou Medical University, China. A total of 208 patients (1040 corneal topography images) were evaluated. Data were collected between 2012 and 2018 using the Pentacam system and analyzed from February 2019 to December 2021. An artificial neural network (KeratoScreen) was trained using a data set of ZCs generated from corneal topography and tomography. Each image was previously assigned to 3 groups: normal (70 eyes; average age, 28.7 ± 2.6 years), subclinical KC (48 eyes; average age, 24.6 ± 5.7 years), and KC (90 eyes; average age, 25.9 ± 5.4 years). The data set was randomly split into 70% for training and 30% for testing. We evaluated the precision of screening symptoms and examined the discriminative capability of several combinations of the input set and nodes. RESULTS: The best results were achieved using ZCs generated from corneal thickness as an input parameter, determining the 3 categories of clinical classification for each subject. The sensitivity and precision rates were 93.9% and 96.1% in subclinical KC cases and 97.6% and 95.1% in KC cases, respectively. CONCLUSIONS: Deep learning algorithms based on ZCs could be used to screen for early KC and for other corneal ectasia during preoperative screening for corneal refractive surgery.


Assuntos
Aprendizado Profundo , Ceratocone , Adolescente , Adulto , Algoritmos , Córnea/diagnóstico por imagem , Topografia da Córnea/métodos , Humanos , Ceratocone/diagnóstico , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...