Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(50): e2205128, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310144

RESUMO

The typical thickness of the photoactive layer in organic solar cells (OSCs) is around 100 nm, which limits the absorption efficiency of the incident light and the power conversion efficiency (PCE) of OSCs. Therefore, light-trapping schemes to reduce the optical losses in the thin photoactive layers are critically important for efficient OSCs. Herein, light-trapping and electron-collection dual-functional small organic molecules, N,N,N',N'-tetraphenyloxalamide (TPEA) and N,N,N',N'-tetraphenylmalonamide (TPMA), are designed and synthesized by a one-step acylation reaction. Driven by strong intermolecular force, TPEA and TPMA tend to self-aggregate into hemispherical light-trapping nanodots on the photoactive layer, resulting in enhanced light harvesting. Meanwhile, TPEA and TPMA demonstrate high electron mobility and excellent electron-collection ability.  Compared with the device without cathode buffer layer (CBL, PCE = 14.09%), PM6:BTP-eC9 based OSCs with TPEA and TPMA light-trapping CBLs demonstrate greatly enhanced PCE of 16.21% and 17.85%, respectively. Furthermore, a record PCE of 19.02% can be achieved for PM6:BTP-eC9:PC71 BM based ternary OSC with TPMA light-trapping CBL. Moreover, TPMA exhibits a low synthesis cost of only 0.61 $ g-1 with high yield. These findings could open a window for the rational design of multifunctional CBLs for efficient and stable OSCs.

2.
Small ; 18(22): e2201820, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502139

RESUMO

The organic-inorganic halide perovskite solar cell (PerSC) is the state-of-the-art emerging photovoltaic technology. However, the environmental water/moisture and temperature-induced intrinsic degradation and phase transition of perovskite greatly retard the commercialization process. Herein, a dual-functional organic ligand, 4,7-bis((4-vinylbenzyl)oxy)-1,10-phenanthroline (namely, C1), with crosslinkable styrene side-chains and chelatable phenanthroline backbone, synthesized via a cost-effective Williamson reaction, is introduced for collaborative electrode interface and perovskite grain boundaries (GBs) engineering. C1 can chemically chelate with Sn4+ in the SnO2 electron transport layer and Pb2+ in the perovskite layer via coordination bonds, suppressing nonradiative recombination caused by traps/defects existing at the interface and GBs. Meanwhile, C1 enables in situ crosslinking via thermal-initiated polymerization to form a hydrophobic and stable polymer network, freezing perovskite morphology, and resisting moisture degradation. Consequently, through collaborative interface-grain engineering, the resulting PerSCs demonstrate high power conversion efficiency of 24.31% with excellent water/moisture and thermal stability. The findings provide new insights of collaborative interface-grain engineering via a crosslinkable and chelatable organic ligand for achieving efficient and stable PerSCs.

3.
ACS Appl Mater Interfaces ; 14(1): 1280-1289, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978428

RESUMO

The development of new electron transporting layer (ETL) materials to improve the charge carrier extraction and collection ability between cathode and the active layer has been demonstrated to be an effective approach to enhance the photovoltaic performance of organic solar cells (OSCs). Herein, water-soluble carbon dots (CDs) as ETL material have been creatively synthesized by a vigorous chemical reaction between polyethylenimine (PEI) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) via a simple one-step hydrothermal method. Taking full advantage of the high electron transfer property of PTCDA and the work function (WF) reduction ability of PEI, CD gained high electron mobility due to its large π-conjugated area and reduced the WF of indium tin oxide (ITO) by 0.75 eV. As for the photovoltaic performance of devices, inverted OSCs based on CDs have achieved a high power conversion efficiency (PCE) of 17.35%, exhibiting no burn-in effect with no reduction in PCE after more than 4000 h of storage. The successful application of CDs in OPV has developed a new avenue for designing efficient ETL materials that benefits the photovoltaic performance of OSCs.

4.
ACS Appl Mater Interfaces ; 14(1): 1187-1194, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958190

RESUMO

Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.

5.
J Phys Chem Lett ; 12(49): 11772-11778, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34855410

RESUMO

The narrow bandgap Pb-Sn hybrid perovskite materials with lower toxicities and adjustable optical bandgaps provide the opportunity to construct high-efficiency perovskite solar cells (PerSCs). To solve the issues of the uncontrollable crystallization rate of Pb-Sn perovskite and easy oxidation of Sn2+, a ß-diketone-based additive, N,N,N',N'-tetraphenylmalondiamide (TPMA), is introduced to coordinate with Pb2+ and Sn2+. The introduction of TPMA can improve the morphology of perovskite films and decrease the density of defect states, resulting in an enhanced power conversion efficiency of >20% and improved stability. The PerSC without encapsulation retains 94% of its initial efficiency after being stored for 1000 h in a nitrogen-filled glovebox and shows a lifetime of only 8% degradation after being continuously heated for 100 h at 80 °C. This work represents a new strategy of introducing a ß-diketone ligand as an additive in precursor engineering for achieving efficient and stable PerSCs.

6.
J Org Chem ; 81(17): 7439-47, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27463419

RESUMO

Novel ß-furan-fused bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (BOPHY) fluorescent dyes (F-BOPHY1-3) were prepared through an efficient process, and their structures were confirmed by (1)H NMR spectroscopy, (13)C NMR spectroscopy, MALDI-TOF HRMS, and element analysis. Their optical properties were then characterized by UV-vis absorption and photoluminescence (PL) spectroscopy. The UV-vis absorption and PL spectra of the dyes shifted to longer wavelengths relative to those of BOPHY because of the fusion of their furan rings, which extended π-conjugation of the molecules. All of the dyes exhibited large extinction coefficients (109700-12300 M(-1) cm(-1)), deep-red fluorescence emission (646-667 nm), moderate fluorescence quantum yields (0.30-0.45), as well as high chemical stability and photostability in solution. These advantageous properties show that these compounds are important to the design of efficient long-wavelength fluorescent dyes and are suitable for various applications in biotechnology and materials science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...