Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(8): 10936-10946, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791232

RESUMO

Recent advances in carbon nanotube (CNT)-based integrated circuits have shown their potential in deep space exploration. In this work, the mechanism governing the heavy-ion-induced displacement damage (DD) effect in semiconducting single-walled CNT field effect transistors (FETs), which is one of the factors limiting device robustness in space, was first and thoroughly investigated. CNT FETs irradiated by a Xe ion fluence of 1012 ions/cm2 can maintain a high on/off current ratio, while transistors' performance failure is observed as the ion fluence increased to 5 × 1012 ions/cm2. Controllable experiments combined with numerical simulations revealed that the degradation mechanism changed as the nonionizing radiation energy built up. The trap generation in the gate dielectric, instead of the CNT channel, was identified as the dominating factor for the high-energy-radiation-induced device failure. Therefore, CNT FETs exhibited a >10× higher DD tolerance than that of Si devices, which was limited by the channel damage under irradiation. More importantly, the distinct failure mechanism determined that CNT FETs can maintain a high DD tolerance of 2.8 × 1013 MeV/g as the technology node scales down to 45 nm node, suggesting the potential of CNT-based VLSI for high-performance and high-robustness space applications.

2.
Light Sci Appl ; 11(1): 48, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232973

RESUMO

The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano-mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...