Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 939: 173518, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815824

RESUMO

To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control group, the addition of polyvinyl chloride (PVC)-MPs exhibited the least inhibition on volatile fatty acids (VFAs), reducing them by 13.49 %. Conversely, polyethylene (PE)-MPs resulted in the greatest inhibition, with a reduction of 29.57 %. MPs, while accelerated the dissolution of WAS that evidenced by an increase of lactate dehydrogenase (LDH) release, concurrently inhibited the activities of relevant hydrolytic enzymes (α-Glucosidase, protease). For microbial mechanisms, MPs addition affected the proliferation of key microorganisms (norank_f_Bacteroidetes_vadinHA17, Ottowia, and Propioniclava) and reduced the abundance of genes associated with hydrolysis and acidification (pfkb, gpmI, ilvE, and aces). Additionally, MPs decreased the levels of key hydrolytic and acidogenic enzymes to inhibit hydrolysis and acidification processes. This research provides a basis for understanding and unveils impact mechanisms of the impact of MPs on sludge anaerobic fermentation.


Assuntos
Fermentação , Microplásticos , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Microplásticos/toxicidade , Esgotos/microbiologia , Redes e Vias Metabólicas , Poluentes Químicos da Água , Ácidos Graxos Voláteis/metabolismo , Microbiota/efeitos dos fármacos , Reatores Biológicos
2.
Sci Total Environ ; 883: 163671, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100123

RESUMO

Recently, breweries have been allowed to discharge brewery wastewater (BWW) to the sewage pipe network to alleviate the shortage of carbon sources of municipal wastewater treatment plants (MWTPs) under the premise of signing a contract with MWTPs in some countries. This study aims to provide a model-based method for MWTPs to evaluate the threshold, the effluent risk, the economic benefits, and the potential greenhouse gas (GHG) emissions reduction of receiving BWW. In this research, a simulation model of an anaerobic-anoxic-oxic process (A2O) receiving BWW was established based on the data of a real MWTP and brewery using GPS-X. The sensitivity factors of 189 parameters were analyzed, and several sensitive parameters were calibrated stably and dynamically. By analyzing the errors and standardized residuals, the calibrated model was proved to be high-quality and reliable. In the next phase, the impact of receiving BWW on the A2O was evaluated in terms of effluent quality, economic benefits, and GHG emissions reduction. The results showed that receiving a certain amount of BWW can effectively reduce the carbon source cost and GHG emissions for the MWTP compared with adding methanol. Though the chemical oxygen demand (COD), biochemical oxygen demand in five days (BOD5), and total nitrogen (TN) in the effluent increased in various degrees, the effluent quality still met the discharge standard implemented by the MWTP. The study can also facilitate the modeling work for many researchers and promote more kinds of food production wastewater to be treated equally.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36554532

RESUMO

In order to improve the catalytic activity and recycling performance of semiconductor activators, and improve the activation pathway of persulfate, graphitic carbon nitride (g-C3N4) was prepared by calcining melamine, and a composite activator Ag2O/g-C3N4 based on g-C3N4 supported metal oxide was prepared using a precipitation method. The morphology, structure, and basic properties of the composites were characterized using SEM, XRD, FT-IR and XPS. The activation efficiency of the Ag2O/g-C3N4 composite activator on peroxodisulfate (PDS) was explored. The results showed that Ag2O in the composite activator was highly dispersed on the surface of g-C3N4 and did not change the molecular structure of g-C3N4 significantly. Under different activation systems, the degradation process of MO was best fitted under the pseudo-second-order reaction kinetic model, compared to the separate g-C3N4 or Ag2O activated PDS systems; the activation of the PDS system with Ag2O/g-C3N4 had the best effect on MO degradation; and the composite activator Ag2O/g-C3N4 showed better activation performance. Under the conditions that the mass combined ratio of Ag2O in the activator was 12%, the initial concentration of PDS was 4 mmol/L, the initial concentration of the activator was 1.25 g/L, and the initial pH was 3, the degradation degree of MO reached 99.4% after 40 min reaction. The free radical quenching experiment proved that the active substances that could degrade MO in the system were SO4-· and ·OH, and the effect of SO4-· was greater than that of ·OH. The degradation degree of MO in the reaction system remained above 80% after four cycles of use, and the crystal structure of Ag2O/g-C3N4 did not change significantly before and after the reaction. The above results show that Ag2O/g-C3N4 is an efficient and stable composite activator with good application potential in the treatment of dye wastewater by activating PDS.


Assuntos
Grafite , Grafite/química , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise , Óxidos
4.
Front Chem ; 10: 1004269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238102

RESUMO

Epichlorohydrin (ECH) is toxic to humans via multiple routes and is a potential carcinogen. The accurate measurement of ECH at trace level (<0.1 µg/L) is still an obstacle hindering the monitoring and regulation of municipal water systems. In this study, an improved headspace solid-phase microextraction (HS-SPME) procedure is developed and optimized to extract and enrich ECH with high sensitivity, accuracy, and precision. A total 17.4-time enhancement in extraction efficiency is achieved compared with the default condition. Specifically, the AC/PDMS/DVB fiber offered a 4.4-time enhancement comparing with the PDMS/DVB fiber. The effects of different mineral salts in SPME were studied and it was found that an addition of 3 g Na2SO4 in the SPME head achieved an additional 3.3-time increase. The pattern how sodium sulfate enhanced ECH extraction by salting out is discussed. The optimization of extraction conditions (pH = 7, 35°C, and 20 min extraction duration) brought another 1.2 times further. Combined with gas chromatography with mass spectrometry, the optimized method exhibits curve linearity in the range of 0.02-1.00 µg/L with an R2 of 0.998. The limit of detection, precision, and accuracy of the method are 0.006 µg/L, 2.6%-5.3%, and -3.5% to -2.0%, respectively. The recovery of ECH spiking in tap water and surface water was investigated, with recovery rates of 88.0%-116% and 72.5%-108%, respectively. Adhering to the requirements of existing water quality regulations, our method shows a high potential to be applied in drinking water quality monitoring and water treatment process assessment.

5.
J Environ Manage ; 321: 115973, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104884

RESUMO

Methylparaben (MP) is an emerging pollutant, and the optimal conditions and kinetics of MP degradation using nano-zero-valent iron-activated persulfate (nZVI/PDS) need to be further investigated. This paper firstly investigated the response surface methodology (RSM) analysis of MP degradation by the heterogeneous system nZVI/PDS and concluded that the initial pH had the most significant effect on MP degradation. The optimal experimental conditions predicted by the RSM were as follows: initial pH 2.75, [nZVI]0 = 2.87 mM, [PDS]0 = 2.18 mM (MP degradation level of 95.30%). First- and second-order kinetic fits were performed for different initial pH levels and different concentrations of MP, nZVI, and PDS. It was determined that k = 0.0365 min-1 (R2 = 0.984) when the initial pH was 3, [PDS]0 = 2 mM, [MP]0 = 20 mg L-1, and [nZVI]0 = 3 mM (MP degradation level of 94.25%). The rest of the conditions were more closely fitted to the second-order reactions. The effects of different concentrations of anions and humic acid (HA) on the MP degradation level and k were examined, and it was found that Cl- could promote MP degradation to 97.69% (increased by 3.65%) and increase the k in accordance with the first-order reaction kinetics (0.0780 min-1, R2 = 0.991). Finally, the analysis of intermediates revealed 5 reaction pathways and 7 reaction intermediates, which inferred a possible reaction mechanism with the recycling performance of nZVI. In this paper, the superiority of nZVI/PDS for the purposes of activating MP degradation was affirmed. The presence of Cl- can enhance the level of MP degradation was confirmed, which provides a new direction for future practical engineering applications.


Assuntos
Ferro , Poluentes Químicos da Água , Cinética , Parabenos
6.
J Environ Manage ; 323: 116106, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126593

RESUMO

The mechanism of Fe2+-activated peroxodisulfate (PDS) by hydroxylamine (HA) has been investigated, however, nano zero-valent iron-activated persulfate (nZVI/PDS) has a more optimal effect and needs further investigation. This study investigated the addition of HA to nZVI/PDS to improve Fe2+ regeneration and accelerate methylparaben (MP) degradation by Fe (0/II/III) cycle. After 60 min of reaction, the HA-enhanced nZVI/PDS (HA/nZVI/PDS) system afforded a 21% increase in MP degradation, reaching 93.26% (1 mM HA, 1 mM nZVI, and 2 mM PDS). nZVI/PDS system was a second-order reaction, but after adding HA, the reaction was more suitable for the first-order reaction. The addition of HA effectively promoted the reduction of Fe3+ to Fe2+ to improve the effect and reaction rate of PDS degradation of MP (k increased from 0.0127 min-1 to 0.0198 min-1) and broadened the reaction pH range. The results of various characterizations of nZVI before and after the reaction revealed that nZVI changed from a spherical structure to a bundle structure and was slightly oxidized. Changes in the Fe2+ and Fe3+ concentrations as well as in the pH of the reaction systems were monitored and the possible reactions of the HA/nZVI/PDS system were derived for the first time (knZVI/PDS<3.7 × 106 M-1 s-1, kFe3+/NH2O· >4.2 min-1). 12 potential compounds were investigated and MP breakdown pathways were speculated; hydroxylation was determined to be the most important pathway of degradation. And the HA/nZVI/PDS system had universal applicability.


Assuntos
Ferro , Poluentes Químicos da Água , Hidroxilamina/química , Hidroxilaminas , Ferro/química , Parabenos , Poluentes Químicos da Água/química
7.
J Environ Sci (China) ; 118: 87-100, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305776

RESUMO

Photocatalytic oxidation of emerging contaminants (ECs) in water has recently gained extensive attentions. In this study, bismuth oxychloride-based plasmon photocatalysts (Bi-Bi3O4Cl) exhibiting high performance were successfully developed by reducing Bi3+ on the surface of Bi3O4Cl. Consequently, the photocatalysts were used to remove ECs from water. The effects of developmental process and Bi metal plasmon resonance on the photoelectric performances of Bi-Bi3O4Cl were investigated through a series of characterizations. The UV-vis diffuse reflection and photoluminescence spectra revealed that the light absorption range of the photocatalyst gradually increased and the electron recombination rate gradually decreased with the introduction of Bi metals. The optimal removal rates of ciprofloxacin and tetrabromobisphenol A by Bi-Bi3O4Cl were 93.8% and 96.4%; the respective reaction rate constants were 5.48 and 4.93 times higher than that of Bi3O4Cl. The mechanism study indicated that main reactants in the photocatalytic system were •O2- radicals and photogenerated holes, and the existence of oxygen vacancies and Bi metals promoted electron transfer in photocatalyst. In conclusion, this research produces a novel, green, highly efficient, and stable visible light photocatalyst for the removal of ECs from water.


Assuntos
Luz , Água , Catálise , Oxirredução , Oxigênio
8.
Environ Res ; 208: 112671, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999023

RESUMO

Hebei Province, located in the North China Plain (NCP) and encircling Beijing and Tianjin, has been suffering from severe air pollution. The monthly average fine particulate matter (PM2.5) concentration was up to 276 µg/m3 in Hebei Province, which adversely affects human health. However, few studies evaluated the coordinated health impact of exposure to PM (PM2.5 and PM10) and other key air pollutants (SO2, NO2, CO, and surface ozone (O3)). In this study, we systematically analyzed the health risks (both mortality and morbidity) due to multiple air pollutants exposures in Hebei Province. The economic loss associated with these health consequences was estimated using the value of statistical life (VSL) and cost of illness (COI) methods. Our results show the health burden and economic loss attributable to multiple ambient air pollutants exposures in Hebei Province is substantial. In 2017, the total premature mortality from multiple air pollutants exposures in Hebei Province was 69,833 (95% CI: 55,549-83,028), which was 2.9 times higher than that of the Pearl River Delta region (PRD). Most of the potential economic loss (79.65%) was attributable to premature mortality from air pollution. The total economic loss due to the health consequences of multiple air pollutants exposures was 175.16 (95% CI: 134.61-224.61) billion Chinese Yuan (CNY), which was 4.92% of Hebei Province's annual gross domestic product (GDP). Thus, the adverse health effects and economic loss caused by exposure to multiple air pollutants should be seriously taken into consideration. To alleviate these damages, Hebei's government ought to establish more stringent measures and regulations to better control air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , China/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais , Humanos , Material Particulado/análise , Material Particulado/toxicidade
9.
Environ Sci Pollut Res Int ; 29(1): 949-962, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34342825

RESUMO

Reservoir water is the most important freshwater resource for many cities, especially in densely populated humid subtropical areas. Economic growth, population increase, and urbanization have been putting reservoir water of Shenzhen (China), a humid subtropical city, under severe threat of eutrophication and water supply shortage. In this study, we focused on an upstream reservoir of Shenzhen and established a 3-dimensional hydrodynamic-ecological model to investigate the water dynamics and nutrient budget. Tributaries to the reservoir were identified as the greatest contributors to nitrogen and phosphorus loads. Zones with weak flows and high nutrient concentration have high risks of causing blooms. Several mitigation measures were proposed, including improving flow by adding additional water exit locations in the reservoir, reducing nutrients in tributaries, and enhancing algal predation, and were evaluated with the established model. The strategies combining hydrodynamic improvement and phosphorus reduction were suggested to decision makers and government managers for short-term management. However, for future water safety, excessive nitrogen is a potential danger. This study provides a modeling framework that can be applied to anthropogenic-influenced reservoirs elsewhere.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , China , Cidades , Eutrofização , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 792: 148247, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34147792

RESUMO

Metal-organic frameworks (MOFs) constitute new class of materials recently used by researchers in the field of controlling cyanobacteria. However, the use of MOFs in combination with allelochemicals for cyanobacteria inhibition had not been investigated before. The present study is aimed towards the investigation of the effect and mechanism of cyanobacteria inhibition by combining MOF with allelochemical (ferulic acid, FA) for the first time. In this study, the results showed that the synergistic effect of Zn2+ and FA from Zn-MOF-FA could inhibit cyanobacteria to a greater extent than the corresponding dosage of Zn2+ and FA. The inhibition ratio of Microcystis aeruginosa has been found to be more than 50% when the Zn-MOF-FA concentration exceeds 2 mg·L-1 after four days exposure. Zn-MOF-FA at 1 mg·L-1 did not completely inhibit M. aeruginosa, and the inhibition effect has been of only temporary type. The inhibitory effect of Zn-MOF-FA on algae has mainly been attributed to the hindrance of electron transfer and energy capture in the photosynthetic system and the oxidative damage caused by reactive oxygen species (ROS).


Assuntos
Cianobactérias , Microcystis , Antioxidantes , Fotossíntese , Zinco/toxicidade
11.
Environ Pollut ; 275: 116672, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581630

RESUMO

Severe fine particulate matter (PM2.5) pollution and the associated health risks remain pressing issues in the Yangtze River Delta (YRD), although significant efforts have been made locally, such as the Clean Air Action since 2013. Regional transport is an important contributor to high PM2.5 levels during haze episodes in the YRD, but its impact on human health is rarely analyzed. In this study, we evaluate the short-term PM2.5-related health risks and associated economic losses due to different source regions by estimating daily mortality based on model results in the YRD. The results show that regional transport induces significant health risks in the YRD during haze days, contributing over 60% of daily premature mortality in Shanghai and Nanjing (major cities in the YRD). Moreover, in Hangzhou and Jiaxing, regional transport's contribution can be as high as 70%. The total daily mean economic loss in the YRD is estimated as 526.8 million Chinese Yuan (approximately 81.4 million U.S. dollar) in winter of 2015 and 2016, accounting for 1.4% of the daily averaged gross domestic product (GDP) of the YRD. Emission control (in accordance with the 13th Five-year Energy Conservation and Emission Reduction Plan) is an effective way to reduce health risks in the YRD, reducing premature deaths during haze days by 12-33%. More stringent emission control measures are suggested for further reduce PM2.5-related health risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental , Humanos , Material Particulado/análise , Rios
12.
Chemosphere ; 254: 126815, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957269

RESUMO

A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene (ISOP) oxidation was applied to study the spatial distribution of SOA, its components and precursors in Shaanxi in July of 2013. The emissions of biogenic volatile organic compounds (BVOCs) were generated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN), of which ISOP and monoterpene (MONO) were the top two, with 1.73 × 109 mol and 1.82 × 108 mol, respectively. The spatial distribution of BVOCs emission was significantly correlated with the vegetation coverage distribution. ISOP and its intermediate semi-volatile gases were up to ∼7.0 and ∼1.4 ppb respectively in the ambient. SOA was generally 2-6 µg/m3, of which biogenic SOA (BSOA) accounted for as high as 84% on average. There were three main BVOCs Precursors including ISOP (58%) and MONO (8%) emit in the studied domain, and ISOP (9%) transported. The Guanzhong Plain had the highest BSOA concentrations of 3-5 µg/m3, and the North Shaanxi had the lowest of 2-3 µg/m3. More than half of BSOA was due to reactive surface uptake of ISOP epoxide (0.2-0.7 µg/m3, ∼19%), glyoxal (GLY) (0.2-0.5 µg/m3, ∼11%) and methylglyoxal (MGLY) (0.4-1.4 µg/m3, ∼32%), while the remaining was due to the traditional equilibrium partitioning of semi-volatile components (0.1-1.2 µg/m3, ∼25%) and oligomerization (0.2-0.4 µg/m3, ∼12%). Overall, SOA formed from ISOP contributed 1-3 µg/m3 (∼80%) to BSOA.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar , Butadienos , China , Hemiterpenos , Monoterpenos/análise , Compostos Orgânicos Voláteis/análise
13.
Sci Total Environ ; 728: 138878, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32335409

RESUMO

The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.


Assuntos
Poluição do Ar/análise , Infecções por Coronavirus , Monitoramento Ambiental , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Cidades , Atividades Humanas , Humanos , Índia , Material Particulado/análise , SARS-CoV-2
14.
Bioresour Technol ; 300: 122595, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31887583

RESUMO

In order to explore the treatment efficiency of optoelectronic wastewater and pollutant degradation mechanism of full-scale two-stage AO process, 160 d monitoring was conducted in this study. The results showed that the two-stage AO process owned relatively stable nitrogen and organic matter removal performance. The average concentration of COD, NH4+-N, and TN in effluent was 54, 3.78 and 13.77 mg L-1, respectively, and the removal rate was over 80%. The results of high-throughput sequencing demonstrated that the dominant microorganism was Proteobacteria, Bacteroidetes, Firmicutes, Chlorofeli, and Acidobacteria, and differences of interaction networks exited between aerobic and anoxic units. Meanwhile, the microorganism metabolism in aerobic units was significantly different from that in anoxic unit, and the metabolism of the microbial community for treating optoelectronic wastewater was significantly different from that for treating urban domestic sewage.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Desnitrificação , Esgotos , Eliminação de Resíduos Líquidos
15.
Langmuir ; 32(20): 5078-84, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27152941

RESUMO

The microstructure of mixtures of deuterated water in the ionic liquid [C4mim][BF4] is investigated by small-angle neutron scattering (SANS) measurement. In the salt-rich region, water dissolves in the ionic liquid up to 0.7 mole fraction, whereupon distinct, nanometer-sized water clusters are observed. These water nanoclusters increase in size with increasing water addition while the mole ratio of water dissolved into the ionic liquid nanostructure increases from 2 to 4. These results provide direct confirmation for recent simulations as well insight into the source of nonidealities in some thermophysical and transport properties (e.g., density and viscosity) of salt-rich aqueous mixtures reported in the literature.

16.
ACS Nano ; 9(3): 3243-53, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25758381

RESUMO

The critical role of solvation forces in dispersing and stabilizing nanoparticles and colloids in 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4] is demonstrated. Stable silica nanoparticle suspensions over 60 wt % solids are achieved by particle surface chemical functionalization with a fluorinated alcohol. A combination of techniques including rheology, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle neutron scattering (SANS) are employed to determine the mechanism of colloidal stability. Solvation layers of ∼5 nm at room temperature are measured by multiple techniques and are thought to be initiated by hydrogen bonds between the anion [BF4](-) and the fluorinated group on the surface coating. Inducing structured solvation layering at particle surfaces through hydrogen bonding is demonstrated as a method to stabilize particles in ionic liquids.

18.
Huan Jing Ke Xue ; 29(6): 1655-9, 2008 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-18763518

RESUMO

Pseudomonas nitroreducens J5-1 is able to use monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,2,4-trichlorobenzene as sole carbon and energy sources, and it differs from those 1,2,4-trichlorobenzene degrading bacteria reported in substrate utilizing characters. PCR technique was used to amplify the genes of chlorobenzene dioxygenase and dehydrogenase of J5-1, and they were named as tcbA and tcbB, respectively. Homology analysis indicated that these genes and gene products were most closely related to those of Burkholderia sp. PS12. By alignment of the amino acid sequences of the a subunits of TcbAa (from J5-1) and TecA1 (from PS12), four amino acid residues from site 307 to site 310 were found to be different (I307L, M308T, I309V, Q310E), which probably retarded the preference for the substrate 1,2,4,5-tetrachlorobenzene. Furthermore, the phylogenetic analysis of the dioxygenase alpha subunits showed that TcbAa was belong to the toluene/diphenyl subfamily, and was most closely related to the poly-chlorinated benzene dioxygenase alpha subunit.


Assuntos
Proteínas de Bactérias/genética , Clorobenzenos/metabolismo , Dioxigenases/genética , Oxirredutases/genética , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Biodegradação Ambiental , Clonagem Molecular , Dioxigenases/classificação , Poluentes Ambientais/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
Huan Jing Ke Xue ; 28(8): 1878-81, 2007 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-17926427

RESUMO

A bacterium capable of utilizing 1,2,4-trichlorobenzene as sole carbon source was isolated from the polluted soil sample. This baterium was identified as Pseudomonas nitroreducens according to its physiological & biochemical analysis and its 16S rDNA sequence (GenBank Accession No. EF107515). When the initial concentration of 1,2,4-TCB is 400 mg/L, J5-1 can achieve a maximum degradation rate of 90%. When the initial concentration of 1,2,4-TCB is 20 mg/L, the effect of degradation is the best. Degradation of 1,2,4-TCB by strain J5-1 obeys the first order dynamics. The total gene of chlorocatechol 1,2-dioxygenase was cloned from genomic DNA of J5-1.


Assuntos
Proteínas de Bactérias/metabolismo , Clorobenzenos/metabolismo , Dioxigenases/metabolismo , Pseudomonas/isolamento & purificação , Poluentes do Solo/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Dioxigenases/classificação , Dioxigenases/genética , Cinética , Dados de Sequência Molecular , Pseudomonas/enzimologia , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...