Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10926, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407645

RESUMO

In the context of global climate change, the cascading risk of compound natural hazards is becoming increasingly prominent. Taking Xilin Gol grassland as study area, we used the Mann-Kendall trend method, the maximum Pearson correlation coefficient method, and Partial least squares structural equations modeling to detect the characteristics of spatiotemporal pattern changes of the three types of droughts. The propagation characteristics and the cascade effects among the three types of droughts was also identified. The standardized precipitation evapotranspiration index, standardized evapotranspiration drought index, and soil moisture index were selected as indicators of meteorological drought, ecohydrological drought, and soil drought, respectively. The results show that the warm and dry trend in Xilin Gol grassland was obvious in the past 30 years. The seasonal propagation of different drought was prominent, with stronger spread relationships in summer. Persistent meteorological drought was more likely to trigger the other two types of droughts. The intensity and range both increased during the propagation from meteorological drought to ecohydrological drought. The cascade effect was differed in different time scales. The multi-year persistent climatic drought has an overwhelming cascade effect on soil drought and ecohydrological drought. For seasonal or annual drought, vegetation cover change has an amplifying or mitigating impact on the cascade effect, where soil moisture, evapotranspiration (ET), and their relationship all play important roles. In eastern areas with better vegetation cover, the reduction of vegetation in the early stage aggravated the cascading effect of meteorological drought to ecohydrological drought through reducing ET. In the northwestern sparsely vegetated areas, ET was mainly influenced by meteorological factors, and the cascade effect of meteorological factors to ecohydrological drought was more obvious than that of soil drought.

2.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016007

RESUMO

Air relative humidity (RH) is an important control parameter in many industrial processes. The acoustic method is a novel technique to measure air humidity non-intrusively. Relevant research is limited. Existing methods use ultrasonic waves as a sound source and air humidity is measured by measuring the sound attenuation. In this paper, a novel air humidity measurement system using low-frequency sound waves as a sound source and two acoustic sensors is proposed. Air humidity is acquired by measuring sound speed in the air. Sound speed mainly depends on air temperature, humidity, atmospheric pressure, and air composition. The influence of air temperature, atmospheric pressure, and air constituent concentrations on the RH measurement is analyzed theoretically. A 0.1 s linear chirp signal in the frequency range of 200-500 Hz is selected as the sound source. Sound travel time is calculated by cross-correlating the sound signals received by the two acoustic sensors. To improve the accuracy of the sound speed measurement, sound speed under different RH points is obtained through reference RH experiments and substituted into the calibration equation. Then, equivalent sound path length and systematic delay are estimated using the least squares method. After obtaining these two parameter values, the sound speed measured by the system is closer to the theoretical value at the same RH point. In validation experiments using RH measured by a thermo-hygrometer as a comparison, the relative errors of the acoustically measured RH are within 9.9% in the RH range of 40.7-87.1%, and the standard deviation is within 4.8%.

3.
J Colloid Interface Sci ; 360(2): 731-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21601864

RESUMO

A simple strategy to fabricate magnetic porous microspheres of Fe(3)O(4)@poly(methylmethacrylate-co-divinylbenzene) was demonstrated. The magnetic microspheres, consisting of polymer-coated iron oxide nanoparticles, were synthesized by the modified suspension polymerization of methacrylate and divinylbenzene in the presence of a magnetic fluid. The morphology and the properties of the magnetic porous microspheres were examined by scanning electron microscopy, transmission electron microscopy, superconducting quantum interference device, Fourier transform infrared spectroscopy, thermogravimetry, and X-ray powder diffraction. The pore size distribution and the specific surface area of the microspheres were measured by nitrogen sorption and mercury porosimetry technique. As predicted from the previous knowledge, the magnetic porous microspheres possessed a high specific surface area using n-hexane as a porogen. It was further found that the amounts of divinylbenzene and methacrylate, the ratio of porogens, and the dosage of ferrofluids affect the specific surface area of the microspheres. Furthermore, the microspheres were applied to remove phenol from aqueous solutions. The results showed that the microspheres had a high adsorption capacity for phenol and a high separation efficiency due to their porous structure, polar groups, and superparamagnetic characteristic.


Assuntos
Óxido Ferroso-Férrico/química , Magnetismo , Fenóis/isolamento & purificação , Polimetil Metacrilato/química , Polivinil/química , Microesferas , Tamanho da Partícula , Porosidade , Soluções , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...