Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.894
Filtrar
1.
Clin Exp Pharmacol Physiol ; 51(7): e13901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843867

RESUMO

Hepatocellular adenoma (HCA) represents a rare benign hepatic neoplasm with potential for malignant transformation into hepatocellular carcinoma (HCC), yet the underlying mechanism remains elusive. In this study, we investigated the genomic landscape of this process to identify therapeutic strategies for blocking malignant transformation. Using micro-detection techniques, we obtained specimens of adenoma, cancerous neoplasm and adjacent normal liver from three patients undergoing hepatic resection surgery. Whole-exome sequencing (WES) was performed, and genomic interactions between HCA and HCC components within the same tumour were evaluated using somatic variant calling, copy number variation (CNV) analysis, clonality evaluation and mutational signature analysis. Our results revealed genomic heterogeneity among patient cases, yet within each sample, HCA and HCC tissues exhibited a similar mutational landscape, suggesting a high degree of homology. Using nonnegative matrix factorization and phylogenetic trees, we identified shared and distinct mutational characteristics and uncovering necessary pathways associated with HCA-HCC malignant transformation. Remarkably, we found that HCA and HCC shared a common monoclonal origin while displaying significant genetic diversity within HCA-HCC tumours, indicating fundamental genetic connections or evolutionary pathways between the two. Moreover, elevated immune therapy-related markers in these patients suggested heightened sensitivity to immune therapy, providing novel avenues for the treatment of hepatic malignancies. This study sheds light on the genetic mechanisms underlying HCA-HCC progression, offering potential targets for therapeutic intervention and highlighting the promise of immune-based therapies in managing hepatic malignancies.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Transformação Celular Neoplásica , Sequenciamento do Exoma , Neoplasias Hepáticas , Mutação , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patologia , Masculino , Feminino , Variações do Número de Cópias de DNA , Pessoa de Meia-Idade , Análise Mutacional de DNA
2.
Adv Sci (Weinh) ; : e2309998, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837687

RESUMO

In surgery, the surgical smoke generated during tissue dissection and hemostasis can degrade the image quality, affecting tissue visibility and interfering with the further image processing. Developing reliable and interpretable computational imaging methods for restoring smoke-affected surgical images is crucial, as typical image restoration methods relying on color-texture information are insufficient. Here a computational polarization imaging method through surgical smoke is demonstrated, including a refined polarization difference estimation based on the discrete electric field direction, and a corresponding prior-based estimation method, for better parameter estimation and image restoration performance. Results and analyses for ex vivo, the first in vivo animal experiments, and human oral cavity tests show that the proposed method achieves visibility restoration and color recovery of higher quality, and exhibits good generalization across diverse imaging scenarios with interpretability. The method is expected to enhance the precision, safety, and efficiency of advanced image-guided and robotic surgery.

3.
Npj Nanophoton ; 1(1): 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854858

RESUMO

The interrelationship between localization, quantum transport, and disorder has remained a fascinating focus in scientific research. Traditionally, it has been widely accepted in the physics community that in one-dimensional systems, as disorder increases, localization intensifies, triggering a metal-insulator transition. However, a recent theoretical investigation [Phys. Rev. Lett. 126, 106803] has revealed that the interplay between dimerization and disorder leads to a reentrant localization transition, constituting a remarkable theoretical advancement in the field. Here, we present the first experimental observation of reentrant localization using an experimentally friendly model, a photonic SSH lattice with random-dimer disorder, achieved by incrementally adjusting synthetic potentials. In the presence of correlated on-site potentials, certain eigenstates exhibit extended behavior following the localization transition as the disorder continues to increase. We directly probe the wave function in disordered lattices by exciting specific lattice sites and recording the light distribution. This reentrant phenomenon is further verified by observing an anomalous peak in the normalized participation ratio. Our study enriches the understanding of transport in disordered mediums and accentuates the substantial potential of integrated photonics for the simulation of intricate condensed matter physics phenomena.

4.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722330

RESUMO

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Homeodomínio , Via de Sinalização Wnt , Humanos , Masculino , Apoptose/genética , Proliferação de Células/genética , Via de Sinalização Wnt/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Azoospermia/metabolismo , Azoospermia/genética , Azoospermia/patologia , Espermatogônias/metabolismo , Espermatogônias/citologia , Espermatogênese/genética , Células-Tronco Germinativas Adultas/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Testículo/metabolismo , Testículo/citologia , Tioléster Hidrolases
5.
BMC Genomics ; 25(1): 446, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714962

RESUMO

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Assuntos
Encéfalo , Redes Reguladoras de Genes , Inflamação , MicroRNAs , Estresse Oxidativo , RNA Mensageiro , Salinidade , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Encéfalo/metabolismo , Animais , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica , Ar , Transcriptoma
6.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728854

RESUMO

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Testes de Sensibilidade Microbiana , Povidona/química , Propriedades de Superfície
7.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745965

RESUMO

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

8.
iScience ; 27(5): 109713, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38746668

RESUMO

This study systematically reviewed the application of large language models (LLMs) in medicine, analyzing 550 selected studies from a vast literature search. LLMs like ChatGPT transformed healthcare by enhancing diagnostics, medical writing, education, and project management. They assisted in drafting medical documents, creating training simulations, and streamlining research processes. Despite their growing utility in assisted diagnosis and improving doctor-patient communication, challenges persisted, including limitations in contextual understanding and the risk of over-reliance. The surge in LLM-related research indicated a focus on medical writing, diagnostics, and patient communication, but highlighted the need for careful integration, considering validation, ethical concerns, and the balance with traditional medical practice. Future research directions suggested a focus on multimodal LLMs, deeper algorithmic understanding, and ensuring responsible, effective use in healthcare.

9.
PLoS One ; 19(5): e0302753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739634

RESUMO

Leprosy has a high rate of cripplehood and lacks available early effective diagnosis methods for prevention and treatment, thus novel effective molecule markers are urgently required. In this study, we conducted bioinformatics analysis with leprosy and normal samples acquired from the GEO database(GSE84893, GSE74481, GSE17763, GSE16844 and GSE443). Through WGCNA analysis, 85 hub genes were screened(GS > 0.7 and MM > 0.8). Through DEG analysis, 82 up-regulated and 3 down-regulated genes were screened(|Log2FC| > 3 and FDR < 0.05). Then 49 intersection genes were considered as crucial and subjected to GO annotation, KEGG pathway and PPI analysis to determine the biological significance in the pathogenesis of leprosy. Finally, we identified a gene-pathway network, suggesting ITK, CD48, IL2RG, CCR5, FGR, JAK3, STAT1, LCK, PTPRC, CXCR4 can be used as biomarkers and these genes are active in 6 immune system pathways, including Chemokine signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, Natural killer cell mediated cytotoxicity and Leukocyte transendothelial migration. We identified 10 crucial gene markers and related important pathways that acted as essential components in the etiology of leprosy. Our study provides potential targets for diagnostic biomarkers and therapy of leprosy.


Assuntos
Biomarcadores , Redes Reguladoras de Genes , Hanseníase , Hanseníase/genética , Hanseníase/microbiologia , Humanos , Biomarcadores/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Transdução de Sinais
10.
Nucleic Acids Res ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752483

RESUMO

Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.

11.
Mol Med ; 30(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773376

RESUMO

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Assuntos
Autofagia , Proteína Beclina-1 , Isquemia Encefálica , Glucosídeos Iridoides , Neurônios , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Masculino , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Adenosina/análogos & derivados
12.
Biomolecules ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786002

RESUMO

The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy-Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy-Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy-Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai.


Assuntos
Diarreia , Animais , Suínos/genética , China , Diarreia/genética , Diarreia/veterinária , Fucosiltransferases/genética , Proteínas de Transporte de Cátions/genética , Cruzamento , Galactosídeo 2-alfa-L-Fucosiltransferase , Mucina-4/genética , Genótipo
13.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
14.
Animals (Basel) ; 14(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791640

RESUMO

To address the safety problems posed by the transportation of boar semen using LN, this study was conducted on the short-term storage of frozen boar semen in dry ice (-79 °C). Boar semen frozen in LN was transferred to dry ice, kept for 1 day, 3 days, 5 days, 7 days, or 8 days, and then moved back to LN. The quality of frozen semen stored in LN or dry ice was determined to evaluate the feasibility of short-distance transportation with dry ice. The results showed that 60 °C for 8 s was the best condition for thawing frozen semen stored in dry ice. No significant differences in spermatozoa motility, plasma membrane integrity, or acrosome integrity were observed in semen after short-term storage in dry ice compared to LN (p > 0.05). There were no significant changes in antioxidant properties between storage groups either (p > 0.05). In conclusion, dry ice could be used as a cold source for the short-term transportation of frozen boar semen for at least 7 days, without affecting sperm motility, morphological integrity, or antioxidant indices.

15.
J Control Release ; 370: 821-834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740092

RESUMO

The poor outcome of glioblastoma multiforme (GBM) treated with immunotherapy is attributed to the profound immunosuppressive tumor microenvironment (TME) and the lack of effective delivery across the blood-brain barrier. Radiation therapy (RT) induces an immunogenic antitumor response that is counteracted by evasive mechanisms, among which transforming growth factor-ß (TGF-ß) activation is the most prominent factor. We report an extracellular vesicle (EV)-based nanotherapeutic that traps TGF-ß by expressing the extracellular domain of the TGF-ß type II receptor and targets GBM by decorating the EV surface with RGD peptide. We show that short-burst radiation dramatically enhanced the targeting efficiency of RGD peptide-conjugated EVs to GBM, while the displayed TGF-ß trap reversed radiation-stimulated TGF-ß activation in the TME, offering a synergistic effect in the murine GBM model. The combined therapy significantly increased CD8+ cytotoxic T cells infiltration and M1/M2 macrophage ratio, resulting in the regression of tumor growth and prolongation of overall survival. These results provide an EV-based therapeutic strategy for immune remodeling of the GBM TME and eradication of therapy-resistant tumors, further supporting its clinical translation.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Fator de Crescimento Transformador beta , Microambiente Tumoral , Glioblastoma/terapia , Animais , Humanos , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Oligopeptídeos/química , Oligopeptídeos/administração & dosagem , Camundongos Endogâmicos C57BL , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Camundongos , Feminino
16.
Hepatology ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722246

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as NAFLD, is increasingly recognized as a prevalent global burden. Type 2 diabetes mellitus (T2DM), another important metabolic disease, is considered a major contributor to the development of MASLD. MASLD and T2DM have a strong association with each other due to shared pathogenic mechanisms. The co-existence of the 2 diseases increases the risk of liver-related adverse outcomes and imposes a heavier burden on extrahepatic outcomes, representing a substantial public health issue. Effective assessment and management of T2DM combined with MASLD necessitate a multidisciplinary approach. The emergence of numerous RCTs has shed light on the treatment of T2DM combined with MASLD. This review uncovers the epidemiology of the intertwined T2DM and MASLD, offers insights into the evaluation of hepatic fibrosis in patients with T2DM, glucose monitoring in the MASLD population, and provides comprehensive co-management strategies for addressing both diseases.

17.
BMC Genomics ; 25(1): 443, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704563

RESUMO

BACKGROUND: The transcriptome and metabolome dissection of the skeletal muscle of high- and low- growing individuals from a crossbred population of the indigenous Chongming white goat and the Boer goat were performed to discover the potential functional differentially expressed genes (DEGs) and differential expression metabolites (DEMs). RESULTS: A total of 2812 DEGs were detected in 6 groups at three time stages (3,6,12 Month) in skeletal muscle using the RNA-seq method. A DEGs set containing seven muscle function related genes (TNNT1, TNNC1, TNNI1, MYBPC2, MYL2, MHY7, and CSRP3) was discovered, and their expression tended to increase as goat muscle development progressed. Seven DEGs (TNNT1, FABP3, TPM3, DES, PPP1R27, RCAN1, LMOD2) in the skeletal muscle of goats in the fast-growing and slow-growing groups was verified their expression difference by reverse transcription-quantitative polymerase chain reaction. Further, through the Liquid chromatography-mass spectrometry (LC-MS) approach, a total of 183 DEMs in various groups of the muscle samples and these DEMs such as Queuine and Keto-PGF1α, which demonstrated different abundance between the goat fast-growing group and slow-growing group. Through weighted correlation network analysis (WGCNA), the study correlated the DEGs with the DEMs and identified 4 DEGs modules associated with 18 metabolites. CONCLUSION: This study benefits to dissection candidate genes and regulatory networks related to goat meat production performance, and the joint analysis of transcriptomic and metabolomic data provided insights into the study of goat muscle development.


Assuntos
Cabras , Carne , Músculo Esquelético , Transcriptoma , Animais , Cabras/genética , Cabras/metabolismo , Músculo Esquelético/metabolismo , Carne/análise , Metabolômica , Perfilação da Expressão Gênica , Metaboloma
18.
Cell Div ; 19(1): 18, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734666

RESUMO

BACKGROUND: The precise mechanisms underlying preeclampsia (PE) pathogenesis remain unclear. Mesenchymal stem cells (MSCs) are involved in the pathology of PE. The aim of our study was to identify the effects of protein phosphatase 2 regulatory subunit B α (PPP2R2A) on MSCs and ascertain its latent role in the progression of PE. METHODS: Reverse-transcription quantitative polymerase chain reaction and western blot analyses were performed to determine the expression of PPP2R2A in decidual tissue and decidual (d)MSCs from healthy pregnant women and patients with PE as well as the expression levels of Bax and Bcl-2 in dMSCs. The levels of p-PI3K, PI3K, p-AKT, and AKT were determined using western blotting. Cell growth, apoptosis, and migration were analyzed using MTT, flow cytometry, and Transwell assays, respectively. Human umbilical vein endothelial cell (HUVEC) tube formation ability was assayed using a HUVEC capillary-like tube formation assay. RESULTS: PPP2R2A was downregulated in decidual tissues and dMSCs of patients with PE when compared with that in healthy pregnant women. Moreover, upregulation of PPP2R2A enhanced cell proliferation, reduced apoptotic dMSC, inhibited Bax expression, and increased Bcl-2 levels. Conditioned medium from PPP2R2A-overexpressing dMSCs promoted HTR-8/SVneo cell migration and angiogenesis of HUVEC. Furthermore, the PPP2R2A plasmid suppressed PI3K/AKT pathway activation in dMSCs. However, these effects were partially reversed by LY2940002 treatment. CONCLUSION: PPP2R2A inhibition contributes to PE by regulating the proliferation, apoptosis, and angiogenesis of MSCs, providing a new therapeutic target for PE diagnosis and treatment.

19.
Pest Manag Sci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619050

RESUMO

BACKGROUND: Leaf feeders, such as Spodoptera frugiperda and Spodoptera litura, and stem borers Ostrinia furnacalis and Chilo suppressalis, occupy two different niches and are well adapted to their particular environments. Borer larvae burrow and inhabit the interior of stems, which are relatively dark. By contrast, the larvae of leaf feeders are exposed to sunlight during feeding. We therefore designed series of experiments to evaluate the effect of light intensity (0, 2000, and 10 000 lx) on these pests with different feeding modes. RESULTS: The development of all four pests was significantly delayed at 0 lx. Importantly, light intensity affected the development of both male and female larvae of borers, but only significantly affected male larvae of leaf feeders. Furthermore, the proportion of female offspring of leaf feeders increased with increasing light intensity (S. frugiperda: 33.89%, 42.26%, 57.41%; S. litura: 38.90%, 51.75%, 65.08%), but no significant differences were found in stem borers. This research also revealed that the survival rate of female leaf feeders did not vary across light intensities, but that of males decreased with increasing light intensity (S. frugiperda: 97.78%, 85.86%, 61.21%; S. litura: 95.83%, 73.54%, 58.99%). CONCLUSION: These results improve our understanding of how light intensity affects sex differences in important lepidopteran pests occupying different feeding niches and their ecological interactions with abiotic factors in agroecosystems. © 2024 Society of Chemical Industry.

20.
Acta Pharmacol Sin ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641745

RESUMO

Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 µg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to ß-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain ß-catenin protein stability by removing the K48 ubiquitin chain from ß-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of ß-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-ß-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for ß-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating ß-catenin-mediated vascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...