Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102269

RESUMO

In an abruptly changing velocity under directional solidification, microstructures and the growth orientation of Al-Al2Cu eutectic lamellar were characterized. The change in solidification rate led to an interfacial instability, which results in a bifurcation of the eutectic lamella into new, refined lamellae. The growth orientation of the eutectic Al2Cu phase was also only in its (001) direction and more strongly oriented to the heat flow direction. The results suggest that the eutectic lamellar Al-Al2Cu bifurcation and the spacing adjustment may be caused by the rate determining lateral diffusion of the solutes after interfacial instability.

2.
Materials (Basel) ; 12(19)2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590439

RESUMO

In this paper, the flower-like FeCo/ZnO composites were successfully firstly prepared by a two-step method, and their microstructures and microwave absorbing properties were characterized. The results show that with an increase of temperature, the content of ZnO loaded on a FeCo/ZnO composite surface was increased. The optimal reflection loss (RL) value can be reached around -53.81 dB at 9.8 GHz, which is obviously superior to results of previous studies and reports, and its effective bandwidth (RL < -10 dB) is 3.8 GHz in the frequency range of 8.7-11.8 GHz with a matching thickness of 1.9 mm. We considered that a large number of lamellar and rod-like ZnO loaded on nano-FeCo single-phase solid solution by two-step method can significantly improve the electromagnetic wave absorption properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA