Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 150(2): 111-127, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38726666

RESUMO

BACKGROUND: G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS: Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS: Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and decreased intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS: Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.


Assuntos
Fibrilação Atrial , Camundongos Knockout , Miócitos Cardíacos , Hormônios Peptídicos , Receptor Tipo 2 de Galanina , Animais , Fibrilação Atrial/metabolismo , Hormônios Peptídicos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/genética , Humanos , Potenciais de Ação/efeitos dos fármacos , Masculino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais
2.
Adv Sci (Weinh) ; 11(11): e2305992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196272

RESUMO

Cardiomyocyte maturation is the final stage of heart development, and abnormal cardiomyocyte maturation will lead to serious heart diseases. CXXC zinc finger protein 1 (Cfp1), a key epigenetic factor in multi-lineage cell development, remains underexplored in its influence on cardiomyocyte maturation. This study investigates the role and mechanisms of Cfp1 in this context. Cardiomyocyte-specific Cfp1 knockout (Cfp1-cKO) mice died within 4 weeks of birth. Cardiomyocytes derived from Cfp1-cKO mice showed an inhibited maturation phenotype, characterized by structural, metabolic, contractile, and cell cycle abnormalities. In contrast, cardiomyocyte-specific Cfp1 transgenic (Cfp1-TG) mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing Cfp1 displayed a more mature phenotype. Mechanistically, deficiency of Cfp1 led to a reduction in trimethylation on lysine 4 of histone H3 (H3K4me3) modification, accompanied by the formation of ectopic H3K4me3. Furthermore, Cfp1 deletion decreased the level of H3K4me3 modification in adult genes and increased the level of H3K4me3 modification in fetal genes. Collectively, Cfp1 modulates the expression of genes crucial to cardiomyocyte maturation by regulating histone H3K4me3 modification, thereby intricately influencing the maturation process. This study implicates Cfp1 as an important molecule regulating cardiomyocyte maturation, with its dysfunction strongly linked to cardiac disease.


Assuntos
Histonas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores/genética , Transativadores/metabolismo
3.
Aquat Toxicol ; 265: 106740, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925787

RESUMO

The presence of antibiotics can affect the natural microbial community and exert selective pressure on the environment's microorganisms. This study focused on three types of urban landscape lakes in Xi'an that were closely related to human activities. By combining basic water quality indicators, antibiotic occurrence status, bacterial communities and their potential metabolic functions, Spearman correlation coefficient and redundancy analysis were used to explore the relationship between them, and further explore the impact mechanism of environmental factors and antibiotics on bacterial community structure. The results showed that ofloxacin, erythromycin, and roxithromycin were the main types of antibiotics in the three landscape lakes, with low ecological risks, and there was a clear clustering of antibiotic occurrence. Proteobacteria was the most abundant bacterial phylum, and each lake had its own unique dominant bacteria, which indicates that they are influenced by varying water sources, pollution, and other nearby environments. Statistical analysis showed that pH and nitrogen nutrients were the most critical environmental factors affecting bacterial communities (P<0.01), while tetracyclines and lincomycins were the antibiotics that had a significant impact on bacterial communities (P<0.05). Antibiotics mainly promote defense- and signal transduction-related functions, and inhibit the metabolic activity of bacterial communities. However, the impact of antibiotics on bacterial diversity, community structure, and potential metabolic function in the three urban lakes was less than that of environmental factors. These results help to clarify the mechanism and degree of impact of different interference factors (environmental factors, conventional pollutants, and antibiotics) on bacterial communities in the water environment and are important for the management of urban landscape lake water environments.


Assuntos
Lagos , Poluentes Químicos da Água , Humanos , Lagos/química , Antibacterianos/farmacologia , Poluentes Químicos da Água/toxicidade , Bactérias , Proteobactérias , China
4.
Gene Ther ; 30(1-2): 142-149, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35644811

RESUMO

Dystrophin deficiency due to genetic mutations causes cardiac abnormalities in Duchenne's muscular dystrophy. Dystrophin is also shown to be downregulated in conventional failing hearts. Whether restoration of dystrophin expression possesses any therapeutic potential for conventional heart failure (HF) remains to be examined. HF mouse model was generated by transverse aortic constriction (TAC). In vivo activation of dystrophin transcription was achieved by tail-vein injection of adeno-associated virus 9 carrying CRISPR/dCas system for dystrophin. We found that activation of dystrophin expression in TAC mice significantly reduced the susceptibility to arrhythmia of TAC mice and the mortality rate. We further demonstrated that over-expression of dystrophin increased cardiac conduction of hearts in TAC mice by optical mapping evaluation. Activation of dystrophin expression also increased peak sodium current in isolated ventricular myocytes from hearts of TAC mice as recorded by the patch-clamp technique. Immunoblotting and immunofluorescence showed that increased dystrophin transcription restored the membrane distribution of Nav1.5 in the hearts of TAC mice. In summary, correction of dystrophin downregulation by the CRISPR-dCas9 system reduced the susceptibility to arrhythmia of conventional HF mice through restoring Nav1.5 membrane distribution. This study paved the way to develop a new therapeutic strategy for HF-related ventricular arrhythmia.


Assuntos
Insuficiência Cardíaca , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...