Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res Commun ; 47(4): 2071-2081, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37421550

RESUMO

The emerging worldwide distributed porcine circovirus type 3 (PCV3) infection poses a serious threat to swine herds. An important means of preventing and controlling PCV3 infection is the development of the vaccine, while, the inability to cultivate in vitro has become the biggest obstacle. Orf virus (ORFV), the prototypic member of the Parapoxviridae, has been proven to be a novel valid vaccine vector for preparing various candidate vaccines. Here, recombinant ORFV expressing capsid protein (Cap) of PCV3 was obtained and proved its favorable immunogenicity inducing antibody against Cap in BALB/c mice. Based on the enhanced green fluorescent protein (EGFP) as a selectable marker, the recombinant rORFVΔ132-PCV3Cap-EGFP was generated. Then, recombinant ORFV expressing Cap only, rORFVΔ132-PCV3Cap, was obtained based on rORFVΔ132-PCV3Cap-EGFP using a double homologous recombination method by screening single non-fluorescent virus plaque. Results of the western blot showed that the Cap can be detected in rORFVΔ132-PCV3Cap infected OFTu cells. The results of immune experiments in BALB/c mice indicated that a specific antibody against Cap of PCV3 in serum was induced by rORFVΔ132-PCV3Cap infection. The results presented here provide a candidate vaccine against PCV3 and a feasible technical platform for vaccine development based on ORFV.


Assuntos
Infecções por Circoviridae , Circovirus , Vírus do Orf , Vacinas Virais , Suínos , Animais , Camundongos , Proteínas do Capsídeo/genética , Circovirus/genética , Anticorpos Antivirais , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Formação de Anticorpos
2.
Virus Res ; 313: 198748, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304133

RESUMO

Senecavirus A (SVA) is a new virus inducing porcine idiopathic vesicular disease that causes significant economic losses. Although some progress has been made in etiological research, the role of host factors in SVA infection remains unclear. This study investigated the role of the host factor, suppressor of cytokine signaling 1 (SOCS1), in SVA infection. The expression of SOCS1 was significantly upregulated with infection of SVA in a dose-dependent manner, and SOCS1 inhibited the expression of type I interferons (IFN-α, IFN-ß) and the production of interferon stimulating genes (ISGs) (ISG56, ISG54, PKR), thereby facilitating viral replication. Further results showed that inhibition of antiviral responses of SOCS1 was achieved by regulating the NF-κB signaling pathway, which attenuates the production of IFNs and pro-inflammatory cytokines. These findings provide a new perspective of SVA pathogenesis and may partially explain the persistence of this infection. Moreover, the data indicate that targeting SOCS1 can help in developing new agents against SVA infection.


Assuntos
Interferon Tipo I , NF-kappa B , Animais , Antivirais , Interferon Tipo I/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Picornaviridae , Transdução de Sinais/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Suínos
3.
Vet Res Commun ; 45(4): 353-361, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34357481

RESUMO

Porcine circovirus type 3 (PCV3) is a highly contagious virus belonging to the family Circoviridae that causes the severe dermatitis and nephropathy syndrome. To date, PCV3 has a worldwide distribution and bring huge economic losses to swine industry. Replicase (Rep) and capsid (Cap) are two major coded proteins of PCV3. Considering the large number of new PCV3 isolates were reported in the past few years and the research for the codon usage pattern of Rep and Cap genes was still a gap, phylogenetic and codon usage analysis of these two genes was performed. Phylogenetic analyses showed that Rep genes in PCV3a were dispersed with no clear clusters while corresponding sequences in PCV3b clustered into two groups and Cap genes clustered into distinct clades according to different genotypes. Relative synonymous codon usage (RSCU) analysis revealed that the codon usage bias existed and effective number of codon (ENC) analysis showed that the bias was slight low. ENC-GC3s plot indicated that mutational pressure and other factors both played a role in PCV3 codon usage and neutrality plot analysis showed that natural selection was the main force influencing the codon usage pattern. The results presented here provided the important basic data on codon usage pattern of Rep and Cap genes, and a better understanding of the evolution and potential origin of PCV3.


Assuntos
Proteínas do Capsídeo/genética , Circovirus/genética , Uso do Códon , Genes Virais/genética , Filogenia , Proteínas do Complexo da Replicase Viral/genética , Circovirus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...