Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(25): 12228-12236, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38847305

RESUMO

Schottky-type self-powered UV photodetectors are promising for next-generation imaging systems. Nevertheless, conventional device fabrication using high-energy metal deposition brings unintentional interface defects, leading to deteriorated device performance and inhomogeneities. Emerging two-dimensional (2D) metallic materials offer an alternative pathway to overcoming such limitations because of their naturally passivated surfaces and the ease of combining with mature bulk semiconductors via van der Waals (vdW) integration. Here, we report the controllable preparation of MoTe2 in the pure 1T' phase and the fabrication of a high-performance 1T'-MoTe2/GaN vdW Schottky photodiode. With the reduced interface states and suppressed dark current as low as 20 pA at zero bias, the photodiode exhibits a remarkable UV-to-visible (R350/R400) rejection ratio of 1.6 × 104, a stable photoresponsivity of ∼50 mA W-1 and a detectivity of 3.5 × 1012 Jones under 360 nm illumination. The photocurrent ON/OFF ratio reaches ∼4.9 × 106 under 10.5 mW irradiation (360 nm). In particular, the 1T'-MoTe2/GaN Schottky diode shows excellent weak-light detection capability, which could detect a 3 nW 360 nm laser and the light emission from a lighter with a pronounced Ilight/Idark ratio of ∼2. Finally, the applications of the device in self-powered UV imaging and optical communication are demonstrated. These results reveal the great prospects of 2D/3D integration in multifunctional optoelectronics, which may inspire novel 2D-related devices and expand their applications in widespread fields.

2.
Front Chem ; 10: 1046010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311419

RESUMO

Research on elemental 2D materials has been experiencing a renaissance in the past few years. Of particular interest is tellurium (Te), which possesses many exceptional properties for nanoelectronics, photonics, and beyond. Nevertheless, the lack of a scalable approach for the thickness engineering and the local properties modulation remains a major obstacle to unleashing its full device potential. Herein, a solution-processed oxidative etching strategy for post-growth thickness engineering is proposed by leveraging the moderate chemical reactivity of Te. Large-area ultrathin nanosheets with well-preserved morphologies could be readily obtained with appropriate oxidizing agents, such as HNO2, H2O2, and KMnO4. Compared with the conventional physical thinning approaches, this method exhibits critical merits of high efficiency, easy scalability, and the capability of site-specific thickness patterning. The thickness reduction leads to substantially improved gate tunability of field-effect transistors with an enhanced current switching ratio of ∼103, promoting the applications of Te in future logic electronics. The response spectrum of Te phototransistors covers the full range of short-wave infrared wavelength (1-3 µm), and the room-temperature responsivity and detectivity reach 0.96 AW-1 and 2.2 × 109 Jones at the telecom wavelength of 1.55 µm, together with a favorable photocurrent anisotropic ratio of ∼2.9. Our study offers a new approach to tackling the thickness engineering issue for solution-grown Te, which could help realize the full device potential of this emerging p-type 2D material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...