Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925513

RESUMO

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.

2.
Eur J Med Res ; 29(1): 65, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245791

RESUMO

Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.


Assuntos
Asma , Chalcona , Chalconas , Humanos , Camundongos , Animais , Chalcona/uso terapêutico , Ovalbumina/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Pulmão/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
J Colloid Interface Sci ; 606(Pt 1): 544-555, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416450

RESUMO

Photocatalysts with highly efficient charge separation are of critical significance for improving photocatalytic hydrogen production performance. Herein, a cost-effective and high-performance composite photocatalyst, cobalt-phosphonate-derived defect-rich cobalt pyrophosphate hybrids (CoPPi-M) modified Cd0.5Zn0.5S is rationally devised via defect and interface engineering, in which the co-catalyst CoPPi-M delivers a strong interaction with host photocatalyst Cd0.5Zn0.5S, rendering Cd0.5Zn0.5S/CoPPi-M with a remarkably improved efficiency of charge separation and migration. Besides, Cd0.5Zn0.5S/CoPPi-M exhibits a hydrophilic surface with ample access to electrons and a strong reduction ability of electrons. Benefiting from these advantages, the integration of defect-rich cobalt pyrophosphate and Cd0.5Zn0.5S enables Cd0.5Zn0.5S/CoPPi-M-5% with high photocatalytic H2 production rate of 6.87 mmol g-1h-1, which is 2.46 times higher than that of pristine Cd0.5Zn0.5S, and the notable apparent quantum efficiency (AQE) is 20.7% at 420 nm. This work provides a promising route for promoting the photocatalytic performance of non-precious hybrid photocatalyst via defect and interface engineering, and advances energy-generation and environment-restoration devices.


Assuntos
Cobalto , Hidrogênio , Cádmio , Difosfatos , Zinco
4.
J Colloid Interface Sci ; 589: 25-33, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33450458

RESUMO

The practical application of photocatalytic water splitting for hydrogen evolution hinges on the development of high-efficient and low-cost photocatalysts. Defects engineering has emerged as a promising strategy to enhance photocatalytic activity effectively. Herein, a facile and versatile co-precipitation method is proposed to fabricate mesoporous Cd-Zn-S solid solutions (E-CdxZn1-xS) with abundant surface defects by the inorganic salts formed in the reaction system as self-template. Compared with Cd-Zn-S solid solutions (W-Cd0.65Zn0.35S) prepared by the traditional co-precipitation method, the enhanced specific surface area and abundant surface defects endow E-Cd0.65Zn0.35S with more accessible active sites and effective separation of electron-hole pairs for the photocatalytic water splitting reaction. The E-Cd0.65Zn0.35S solid solution exhibits hydrogen evolution rate of 5.2 mmol h-1 g-1 without loading noble metal as cocatalyst under visible light, which is 1.13 times higher than that of W-Cd0.65Zn0.35S sample. The present work provides a simple, low-cost and prospective strategy for the synthesis of defective Cd-Zn-S solid solutions, and it also delivers guidance to design and develop the advanced visible-light photocatalyst in the future.

5.
Sci Rep ; 10(1): 12444, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710009

RESUMO

Titanium dioxide (TiO2) was prepared from four natural wood spices that served as templates. The wood templates were impregnated by a titanium dioxide precursor and then underwent high-temperature calcination to obtain TiO2 with a wood-like hierarchical porous structure. The microstructure of TiO2 based on the wood template was characterized by scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption tests. The formaldehyde adsorption and degradation properties of TiO2 based on a wood template are discussed. The results showed that TiO2 based on a wood template could effectively replicate the micro- and mesoscopic pore structure of wood, and the pore size distribution in the TiO2 ranged from 1 to 100 nm. The TiO2 that was prepared based on a wood template showed a certain adsorption effect on formaldehyde under visible light, and the photocatalytic degradation of a formaldehyde solution was achieved when irritated by ultraviolet light. In addition, the properties of the TiO2 prepared by different tree species was also different. The TiO2 prepared by larch and Chinese fir exhibited a large specific surface area, pore volume, and high degradation efficiency of formaldehyde solution. After 280 min of irradiation with an ultraviolet light source, the degradation rates of the formaldehyde solution were 19.91% and 18.85%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...