Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428046

RESUMO

The surface sediments as a repository of pelagic environment changes and microbial community structural succession tend to have a profound effect on global and local nitrogen and sulfur cycling. In this study, analysis of sediment samples collected from the Bohai Sea, Yellow Sea, and north of the East China Seas (BYnECS) revealed longitude, latitude, depth, and chlorophyll had the strongest influence on microbial community structure (p-values < 0.005). A clear distance-decay pattern was exhibited in BYnECS. The result of co-occurrence network modularization implied that the more active pathway in winter was thiosulfate reduction and nitrate reduction, while in summer it was nitrification. The potential functional genes were predicted in microbial communities, and the most dominant genes were assigned to assimilatory sulfur reduction, denitrification, and dissimilatory nitrate reduction. This study innovatively explored the potential relationships between nitrogen and sulfur cycling genes of these three sea regions in the China Sea.


Assuntos
Sedimentos Geológicos , Nitratos , Sedimentos Geológicos/química , Nitratos/metabolismo , Nitrogênio , Estações do Ano , Enxofre , China
2.
Nanotechnology ; 35(5)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37879324

RESUMO

Reverse water gas shift (RWGS) reaction is an intriguing strategy to realize carbon neutrality, however, the endothermic process usually needs high temperature that supplied by non-renewable fossil fuels, resulting in secondary energy and environmental issues. Photothermal catalysis are ideal substitutes for the conventional thermal catalysis, providing that high reaction efficiency is achievable. Two-dimensional (2D) materials are highly active as RWGS catalysts, however, their industrial application is restricted by the preparation cost. In this study, a series of 2D Co-based catalysts for photothermal RWGS reaction with tunable selectivity were prepared by self-assembly method based on cheap amylum, by integrating the 2D catalysts with our homemade photothermal device, sunlight driven efficient RWGS reaction was realized. The prepared 2D Co0.5Ce0.5Oxexhibited a full selectivity toward CO (100%) and could be heated to 318 °C under 1 kW m-2irradiation with the CO generation rate of 14.48 mmol g-1h-1, pointing out a cheap and universal method to prepare 2D materials, and zero consumption CO generation from photothermal RWGS reaction.

3.
Water Res ; 245: 120619, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716295

RESUMO

The microbial consortium involving anaerobic ammonium oxidation (anammox) and partial denitrification (PD), known as PD-anammox, is an emerging energy-efficient and lower carbon nitrogen removal process from wastewater. However, maintaining a stable PD process by locking nitrate reduction until nitrite was challenging. This study established the first stable connection of anammox with constant nitrite generation by PD bacteria under a low-strength (1.3 mT) magnetic field (MF). When the nitrogen loading rate was 1.81 kg-N/m3/d, the nitrogen removal efficiency of the control reactor (R1) was 75%, lower than that of the experimental reactor (R2), which was 85%. The expression of Thauera and Zoogloea, potential PD bacteria was substantially lower in R1 (5.75% and 1.21%, respectively) than in R2 (10.25 and 6.61%, respectively), according to a meta-transcriptomic analysis. At the same time, the mRNA expression of anammox genera Candidatus Brocadia and Candidatus Kuenenia was 33.53% and 3.83% in R1 and 22.86% and 1.87% in R2. Moreover, carbon and nitrogen metabolism pathways were more abundant under the influence of low-strength MF. The selective enrichment of PD bacteria can be attributed to the increased expression of carbon metabolic pathways like the citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism. Interestingly, the control reactor was dominated by a hydroxylamine-dependent anammox process while a low-strength MF-enhanced nitric-oxide-dependent anammox process. For successful anammox-centered nitrogen removal from wastewater, this study demonstrated that low-strength MF is a convenient and applicable technique to lock the nitrate reduction until nitrite.

4.
Bioresour Technol ; 386: 129558, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499920

RESUMO

The chemical oxygen demand (COD) in municipal wastewater has become an obstacle for anammox in mainstream applications. In this study, the single chamber microbial fuel cell (MFC) was installed as an influent device for a partial nitrification-sequencing batch reactor (PN-SBR) to realize integrating COD removal and partial nitrification. After 80 days of operation, the nitrite accumulation rate reached 93%, while the COD removal efficiency was 56%. The output voltage and the power density of MFC were 66.62 mV and 2.40 W/m3, respectively. The content of EPS, especially polysaccharides in the stable phase, has increased compared with the seed sludge. The most dominant genus in MFC anode biofilm and SBR granular sludge was Thauera, which has organic compounds degradation capacity and could degrade nitrate. This study revealed the microbial interaction between MFC and partial nitrification and provided a new strategy for stable ammonia and nitrite supply for mainstream anammox plants.


Assuntos
Fontes de Energia Bioelétrica , Nitrificação , Esgotos , Amônia , Desnitrificação , Nitritos , Reatores Biológicos , Oxirredução , Nitrogênio
5.
Sci Total Environ ; 889: 164213, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196969

RESUMO

Sustainable development goal 6 emphasizes the efficient management of water resources, wastewater treatment, and reuse of treated wastewater. Removing nitrogen from wastewater was an economically expensive and energy-consuming wastewater treatment process. The discovery of anammox changes the paradigm of wastewater treatment. Nevertheless, coupling anammox with partial nitrification (PN-anammox) has been an immensely rewarding and scientifically supported side-stream wastewater treatment process. However, the PN-anammox process is inherited with severe issues of higher effluent nitrate and lower nitrogen removal efficiency at a lower temperature. Thus, it is evident that PN-anammox cannot meet the desired target without the involvement of others nitrogen cycle bacteria. The nitrate reduction pathways such as denitrifying anaerobic methane-oxidizing (DAMO) microbes, partial denitrification (PD), and dissimilatory nitrate reduction to ammonium (DNRA) seem the best alternative to reduce nitrate into nitrite or ammonium for anammox supplement. From the perspective of the environment, the coupling of anammox with PD, DAMO, and DNRA alleviates the use of organic matter, decreases greenhouse gas release, and reduces energy consumption. This review comprehensively discussed the importance and application perspective of anammox with diverse nitrate-reducing bacteria. Furthermore, research is still needed about DAMO-anammox and DNRA-anammox to achieve higher nitrogen removal efficiency. Future research should incorporate emerging pollutants removal in the anammox coupling process. This review will provide deep insight into the design of energy-efficient and carbon-neutral nitrogen removal from wastewater.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Águas Residuárias , Desnitrificação , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Oxirredução , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Metano/metabolismo , Compostos de Amônio/metabolismo
6.
Nano Lett ; 22(20): 8241-8249, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36215318

RESUMO

Metal halide perovskite ferroelectrics possess various physical characteristics such as piezoelectric and pyroelectric effects, which could broaden the application of perovskite ferroelectrics and enhance the optoelectronic performance. Therefore, it is promising to combine multiple effects to optimize the performance of the self-powered PDs. Herein, patterned 2D ferroelectric perovskite (PMA)2PbCl4 microbelt arrays were demonstrated through a PDMS template-assisted antisolvent crystallization method. The perovskite arrays based flexible photodetectors exhibited fine self-powered photodetection performance under 320 nm illumination and much enhanced reproducibility compared with the randomly distributed single-crystal microbelts-based PDs. Furthermore, by introducing the piezo-phototronic effect, the performance of the flexible PD was greatly enhanced. Under an external tensile strain of 0.71%, the responsivity was enhanced by 185% from 84 to 155.5 mA/W. Our findings offer the advancement of comprehensively utilizing various physical characteristics of the ferroelectrics for novel ferroelectric optoelectronics.


Assuntos
Óxidos , Óxido de Zinco , Reprodutibilidade dos Testes , Compostos de Cálcio , Óxido de Zinco/química
7.
Nanoscale ; 14(14): 5430-5438, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322838

RESUMO

Packaging electrocatalysts with carbon shells offers an opportunity to develop stable and effective hydrogen evolution reaction (HER) materials. Here, an ultrathin N-doped carbon-coated self-supported WP nanowire array (WP@NC NA) hybrid has been synthesized. Owing to the encapsulation of the ultrathin N-doped carbon shell on the WP surface, the as-prepared WP@NC NA hybrid exhibits enhanced physicochemical stability, more active sites, and superior conductivity compared with WP NA without carbon coating. Besides, density functional theory calculations demonstrate that the carbon shell can optimize the hydrogen adsorption step in the acidic HER, and simultaneously facilitate water physical adsorption, water dissociation, and hydroxyl group desorption steps during the alkaline HER. These findings demonstrate the intrinsic mechanism of how a carbon shell promotes the acidic and alkaline HER kinetics, and provide scientific guidance for the packaging design of promising carbon-encapsulating self-supported electrocatalysts.

8.
ACS Nano ; 16(1): 1280-1290, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34995467

RESUMO

2D hybrid perovskite ferroelectrics have drawn great attention in the field of photodetection, because the spontaneous polarization-induced built-in electric field can separate electron-hole pairs, and makes self-powered photodetection possible. However, most of the 2D hybrid perovskite-based photodetectors focused on the detection of visible light, and only a few reports realized the self-powered and sensitive ultraviolet (UV) detection using wide bandgap hybrid perovskites. Here, 2D ferroelectric PMA2PbCl4 monocrystalline microbelt (MMB)-based PDs are demonstrated. By using the ferro-pyro-phototronic effect, the self-powered Ag/Bi/2D PMA2PbCl4 MMB/Bi/Ag PDs show a high photoresponsivity up to 9 A/W under 320 nm laser illumination, which is much higher than those of previously reported self-powered UV PDs. Compared with responsivity induced by the photovoltaic effect, the responsivity induced by the ferro-pyro-phototronic effect is 128 times larger. The self-powered PD also shows fast response and recovery speed, with the rise time and fall time of 162 and 226 µs, respectively. More importantly, the 2D PMA2PbCl4 MMB-based PDs with Bi/Ag electrode exhibit significant stability when subjected to high humidity, continuous laser illumination, and thermal conditions. Our findings would shed light on the ferro-pyro-phototronic-effect-based devices, and provide a good method for high-performance UV detection.

9.
Bioresour Technol ; 314: 123714, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32593786

RESUMO

In the present study, an up-flow solid-phase denitrification biofilm reactor (US-DBR) was established for simultaneous nitrate and dissolved organic matter (DOM) removal from wastewater treatment plant effluent. After 100 days operation, the nitrate and COD removal efficiencies were high of 97% and 80%, respectively. According to EEM-FRI analysis, aromatic and tryptophan protein-like, humic-like and fulvic acid-like substances were identified in DOM. Additionally, protein-like substances in DOM components were much easier transformed as carbon source for denitrification. Moreover, protein secondary structure of DOM changed significantly due to the biodegradation and microorganisms metabolic process. High-throughput sequencing analysis implied that Simplicispira, Diaphorobacter, Hydrogenophaga, Pseudoxanthmonas and Stenotrophomonas were the dominate genera in the whole of US-DBR, that were responsible for the removal of nitrate, organics and degradation of solid carbon source, respectively. This study provided a further biological basis about practical application of solid-phase denitrification for simultaneously remove nitrate and organic matter.


Assuntos
Desnitrificação , Águas Residuárias , Biofilmes , Reatores Biológicos , Nitratos , Nitrogênio
10.
Dalton Trans ; 45(30): 12215-20, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27411573

RESUMO

CdO : Ag nanocomposites with metallic Ag nanoparticles embedded in the polycrystalline CdO matrix were synthesized by the solid-state reaction method. The addition of Ag led to increased grain boundaries of CdO and created numerous CdO/Ag interfaces. By incorporating Ag into the CdO matrix, the power factor was increased which was probably due to the carrier energy filtering effect induced by the enhanced energy-dependent scattering of electrons. In addition, reduced thermal conductivity was also achieved by stronger phonon scattering from grain boundaries, CdO/Ag interfaces and Ag nanoparticles. These concomitant effects resulted in enhanced ZT values for all CdO : Ag nanocomposites, demonstrating that the strategy of introducing metallic Ag nanoparticles into the CdO host was very effective in optimizing the thermoelectric performance.

11.
Dalton Trans ; 45(27): 11145-9, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27326902

RESUMO

The fabrication of p-type doped ZnO nanostructures is key in opening up substantial opportunities for the application of ZnO nanostructures. Owing to their stable p-type property, Na ions are the best candidates for ZnO p-type doping. However, Na-doped ZnO nanostructures had never been prepared until now. For the first time, we successfully synthesized Na-doped ZnO ultrathin hollow spheres using an ion adsorption and templating method. The obtained hollow spheres have ultrathin shells, uniform Na elemental distribution and a controllable concentration of doped Na. The energy position of the Fermi level decreased with continuously increasing Na doping concentration, revealing the p-type conductivity of Na-doped ZnO. We demonstrate that the photocatalytic hydrogen generation efficiency (with methanol) using ZnO ultrathin hollow spheres can be enhanced by more than 50 times after Na-doping and that the quantum efficiency can be as high as 13.5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...