Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(7): e2102397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862722

RESUMO

Smart supercapacitors are a promising energy storage solution due to their high power density, long cycle life, and low-maintenance requirements. Functional polymers (FPs) and inorganic nanomaterials are used in smart supercapacitors because of the favorable mechanical properties (flexibility and stretchability) of FPs and the energy storage properties of inorganic materials. The complementary properties of these materials facilitate commercial applications of smart supercapacitors in flexible smart wearables, displays, and self-generation, as well as energy storage. Here, an overview of strategies for the development of suitable materials for smart supercapacitors is presented, based on recent literature reports. A range of synthetic techniques are discussed and it is concluded that a combination of organic and inorganic hybrid materials is the best option for realizing smart supercapacitors. This perspective facilitates new strategies for the synthesis of hybrid materials, and the development of material technologies for smart energy storage applications.

2.
Chemistry ; 27(42): 10998-11004, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33909301

RESUMO

Fe0.95 S1.05 with high reactivity and stability was incorporated into WS2 nanosheets via a one-step solvothermal method for the first time. The resulted hybrid catalyst has much higher catalytic activity than WS2 and Fe0.95 S1.05 alone, and the optimal WS2 /Fe0.95 S1.05 hybrid catalyst was found by adjusting the feed ratio. The addition of Fe0.95 S1.05 was proven to be able to enhance the hydrogen evolution reaction (HER) activity of WS2 , and vice versa. At the same time, it was found that the catalytic effect of the hybrid catalyst was the best when the feed ratio was W : Fe=2 : 1. In other words, we confirmed that there is a synergistic effect between W- and Fe-based sulfide hybrid catalysts, and validated that the reason for the improved HER performance is the strong interaction between the two in the middle sulfur. WS2 /Fe0.95 S1.05 -2 hybrid catalyst leads to enhanced HER activity, which shows a low overpotential of ∼0.172 V at 10 mA cm-2 , low Tafel slope of ∼53.47 mV/decade. This study supplies innovative synthesis of a highly active WS2 /Fe0.95 S1.05 hybrid catalyst for HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...