Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinol Diabetes Metab ; 6(5): e435, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345227

RESUMO

INTRODUCTION: Algorithm-enabled remote patient monitoring (RPM) programs pose novel operational challenges. For clinics developing and deploying such programs, no standardized model is available to ensure capacity sufficient for timely access to care. We developed a flexible model and interactive dashboard of capacity planning for whole-population RPM-based care for T1D. METHODS: Data were gathered from a weekly RPM program for 277 paediatric patients with T1D at a paediatric academic medical centre. Through the analysis of 2 years of observational operational data and iterative interviews with the care team, we identified the primary operational, population, and workforce metrics that drive demand for care providers. Based on these metrics, an interactive model was designed to facilitate capacity planning and deployed as a dashboard. RESULTS: The primary population-level drivers of demand are the number of patients in the program, the rate at which patients enrol and graduate from the program, and the average frequency at which patients require a review of their data. The primary modifiable clinic-level drivers of capacity are the number of care providers, the time required to review patient data and contact a patient, and the number of hours each provider allocates to the program each week. At the institution studied, the model identified a variety of practical operational approaches to better match the demand for patient care. CONCLUSION: We designed a generalizable, systematic model for capacity planning for a paediatric endocrinology clinic providing RPM for T1D. We deployed this model as an interactive dashboard and used it to facilitate expansion of a novel care program (4 T Study) for newly diagnosed patients with T1D. This model may facilitate the systematic design of RPM-based care programs.


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Humanos , Acessibilidade aos Serviços de Saúde , Monitorização Fisiológica
2.
Front Endocrinol (Lausanne) ; 13: 1021982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440201

RESUMO

Introduction: Population-level algorithm-enabled remote patient monitoring (RPM) based on continuous glucose monitor (CGM) data review has been shown to improve clinical outcomes in diabetes patients, especially children. However, existing reimbursement models are geared towards the direct provision of clinic care, not population health management. We developed a financial model to assist pediatric type 1 diabetes (T1D) clinics design financially sustainable RPM programs based on algorithm-enabled review of CGM data. Methods: Data were gathered from a weekly RPM program for 302 pediatric patients with T1D at Lucile Packard Children's Hospital. We created a customizable financial model to calculate the yearly marginal costs and revenues of providing diabetes education. We consider a baseline or status quo scenario and compare it to two different care delivery scenarios, in which routine appointments are supplemented with algorithm-enabled, flexible, message-based contacts delivered according to patient need. We use the model to estimate the minimum reimbursement rate needed for telemedicine contacts to maintain revenue-neutrality and not suffer an adverse impact to the bottom line. Results: The financial model estimates that in both scenarios, an average reimbursement rate of roughly $10.00 USD per telehealth interaction would be sufficient to maintain revenue-neutrality. Algorithm-enabled RPM could potentially be billed for using existing RPM CPT codes and lead to margin expansion. Conclusion: We designed a model which evaluates the financial impact of adopting algorithm-enabled RPM in a pediatric endocrinology clinic serving T1D patients. This model establishes a clear threshold reimbursement value for maintaining revenue-neutrality, as well as an estimate of potential RPM reimbursement revenue which could be billed for. It may serve as a useful financial-planning tool for a pediatric T1D clinic seeking to leverage algorithm-enabled RPM to provide flexible, more timely interventions to its patients.


Assuntos
Diabetes Mellitus Tipo 1 , Telemedicina , Humanos , Criança , Diabetes Mellitus Tipo 1/terapia , Monitorização Fisiológica , Glicemia , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...