Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthc Technol Lett ; 11(2-3): 167-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638496

RESUMO

Root canal therapy (RCT) is a widely performed procedure in dentistry, with over 25 million individuals undergoing it annually. This procedure is carried out to address inflammation or infection within the root canal system of affected teeth. However, accurately aligning CT scan information with the patient's tooth has posed challenges, leading to errors in tool positioning and potential negative outcomes. To overcome these challenges, a mixed reality application is developed using an optical see-through head-mounted display (OST-HMD). The application incorporates visual cues, an augmented mirror, and dynamically updated multi-view CT slices to address depth perception issues and achieve accurate tooth localization, comprehensive canal exploration, and prevention of perforation during RCT. Through the preliminary experimental assessment, significant improvements in the accuracy of the procedure are observed. Specifically, with the system the accuracy in position was improved from 1.4 to 0.4 mm (more than a 70% gain) using an Optical Tracker (NDI) and from 2.8 to 2.4 mm using an HMD, thereby achieving submillimeter accuracy with NDI. 6 participants were enrolled in the user study. The result of the study suggests that the average displacement on the crown plane of 1.27 ± 0.83 cm, an average depth error of 0.90 ± 0.72 cm and an average angular deviation of 1.83 ± 0.83°. Our error analysis further highlights the impact of HMD spatial localization and head motion on the registration and calibration process. Through seamless integration of CT image information with the patient's tooth, our mixed reality application assists dentists in achieving precise tool placement. This advancement in technology has the potential to elevate the quality of root canal procedures, ensuring better accuracy and enhancing overall treatment outcomes.

2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834674

RESUMO

Obesity induces lipodystrophy and metabolic inflammation. Microbe-derived antioxidants (MA) are novel small-molecule nutrients obtained from microbial fermentation, and have anti-oxidation, lipid-lowering and anti-inflammatory effects. Whether MA can regulate obesity-induced lipodystrophy and metabolic inflammation has not yet been investigated. The aim of this study was to investigate the effects of MA on oxidative stress, lipid disorders, and metabolic inflammation in liver and epididymal adipose tissues (EAT) of mice fed with a high-fat diet (HFD). Results showed that MA was able to reverse the HFD-induced increase in body weight, body fat rate and Lee's index in mice; reduce the fat content in serum, liver and EAT; and regulate the INS, LEP and resistin adipokines as well as free fatty acids to their normal levels. MA also reduced de novo synthesis of fat in the liver and EAT and promoted gene expression for lipolysis, fatty acid transport and ß-oxidation. MA decreased TNF-α and MCP1 content in serum, elevated SOD activity in liver and EAT, induced macrophage polarization toward the M2 type, inhibited the NLRP3 pathway, increased gene expression of the anti-inflammatory factors IL-4 and IL-13 and suppressed gene expression of the pro-inflammatory factors IL-6, TNF-α and MCP1, thereby attenuating oxidative stress and inflammation induced by HFD. In conclusion, MA can effectively reduce HFD-induced weight gain and alleviate obesity-induced oxidative stress, lipid disorders and metabolic inflammation in the liver and EAT, indicating that MA shows great promise as a functional food.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Lipodistrofia , Camundongos , Animais , Antioxidantes/farmacologia , Dieta Hiperlipídica , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Anti-Inflamatórios/farmacologia , Lipodistrofia/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
3.
Cell Mol Neurobiol ; 43(1): 251-264, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34853925

RESUMO

Hypoxia-ischemia (HI) during crucial periods of brain formation can lead to changes in brain morphology, propagation of neuronal stimuli, and permanent neurodevelopmental impairment, which can have profound effects on cognitive function later in life. FAM3A, a subgroup of family with sequence similarity 3 (FAM3) gene family, is ubiquitously expressed in almost all cells. Overexpression of FAM3A has been evidenced to reduce hyperglycemia via the PI3K/Akt signaling pathway and protect mitochondrial function in neuronal HT22 cells. This study aims to evaluate the protective role of FAM3A in HI-induced brain impairment. Experimentally, maternal rats underwent uterine artery bilateral ligation to induce neonatal HI on day 14 of gestation. At 6 weeks of age, cognitive development assessments including NSS, wire grip, and water maze were carried out. The animals were then sacrificed to assess cerebral mitochondrial function as well as levels of FAM3A, TNF-α and IFN-γ. Results suggest that HI significantly reduced FAM3A expression in rat brain tissues, and that overexpression of FAM3A through lentiviral transduction effectively improved cognitive and motor functions in HI rats as reflected by improved NSS evaluation, cerebral water content, limb strength, as well as spatial learning and memory. At the molecular level, overexpression of FAM3A was able to promote ATP production, balance mitochondrial membrane potential, and reduce levels of pro-inflammatory cytokines TNF-α and IFN-γ. We conclude that FAM3A overexpression may have a protective effect on neuron morphology, cerebral mitochondrial as well as cognitive function. Created with Biorender.com.


Assuntos
Hipóxia-Isquemia Encefálica , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Animais Recém-Nascidos , Encéfalo/metabolismo , Isquemia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293333

RESUMO

Inflammation plays an important role in the innate immune response, yet overproduction of inflammation can lead to a variety of chronic diseases associated with the innate immune system; therefore, modulation of the excessive inflammatory response has been considered a major strategy in the treatment of inflammatory diseases. Activation of the ROS/NLRP3/IL-1ß signaling axis has been suggested to be a key initiating phase of inflammation. Our previous study found that microbe-derived antioxidants (MA) are shown to have excellent antioxidant and anti-inflammatory properties; however, the mechanism of action of MA remains unclear. The current study aims to investigate whether MA could protect cells from LPS-induced oxidative stress and inflammatory responses by modulating the Nrf2-ROS-NLRP3-IL-1ß signaling pathway. In this study, we find that MA treatment significantly alleviates LPS-induced oxidative stress and inflammatory responses in RAW264.7 cells. MA significantly reduce the accumulation of ROS in RAW264.7 cells, down-regulate the levels of pro-inflammatory factors (TNF-α and IL-6), inhibit NLRP3, ASC, caspase-1 mRNA, and protein levels, and reduce the mRNA, protein levels, and content of inflammatory factors (IL-1ß and IL-18). The protective effect of MA is significantly reduced after the siRNA knockdown of the NLRP3 gene, presumably related to the ability of MA to inhibit the ROS-NLRP3-IL-1ß signaling pathway. MA is able to reduce the accumulation of ROS and alleviate oxidative stress by increasing the content of antioxidant enzymes, such as SOD, GSH-Px, and CAT. The protective effect of MA may be due to its ability of MA to induce Nrf2 to enter the nucleus and initiate the expression of antioxidant enzymes. The antioxidant properties of MA are further enhanced in the presence of the Nrf2 activator SFN. After the siRNA knockdown of the Nrf2 gene, the antioxidant and anti-inflammatory properties of MA are significantly affected. These findings suggest that MA may inhibit the LPS-stimulated ROS/NLRP3/IL-1ß signaling axis by activating Nrf2-antioxidant signaling in RAW264.7 cells. As a result of this study, MA has been found to alleviate inflammatory responses and holds promise as a therapeutic agent for inflammation-related diseases.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-18 , Interleucina-6/farmacologia , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Nutrients ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145203

RESUMO

Flammulina velutipes (FV) is edible mushroom that has nutritional and medicinal values. FV mycorrhizae, the by-products of FV, are an abundant source and receive less attention. The objective of this study was to investigate the composition of FV mycorrhizae, and its effects on high fat diet (HFD)-induced lipid disorder, oxidative stress, and inflammatory cytokines, both in the liver and perirenal adipose tissue (PAT) of mice. The results showed that FV mycorrhizae contain abundant trace elements, polysaccharide, amino acids and derivatives, and organic compounds. It was found that 4% FV mycorrhizae (HFDFV) supplementation decreased HFD-induced liver weight and triglyceride (TG) in the plasma, liver and PAT, altered plasma and hepatic fatty acids profiles, promoted gene expression involved in lipid hydrolysis, fatty acid transportation and ß-oxidation in the liver and reduced lipid synthesis in the liver and PAT. HFDFV attenuated HFD-induced oxidative stress and pro-inflammatory cytokine by increasing GSH/GSSG, and decreasing levels of MDA and IL6 both in the liver and PAT, while it differentially regulated gene expression of IL1ß, IL6, and CCL2 in liver and PAT. The results indicated that FV mycorrhizae are effective to attenuate HFD-induced lipid disorder, oxidative stress and inflammation in the liver and PAT, indicating their promising constituents for functional foods and herbal medicine.


Assuntos
Flammulina , Transtornos do Metabolismo dos Lipídeos , Micorrizas , Hepatopatia Gordurosa não Alcoólica , Oligoelementos , Tecido Adiposo/metabolismo , Aminoácidos/metabolismo , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Flammulina/química , Flammulina/metabolismo , Dissulfeto de Glutationa/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Micorrizas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Oligoelementos/metabolismo , Triglicerídeos/metabolismo
6.
Ecotoxicol Environ Saf ; 232: 113219, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104775

RESUMO

Environmental excessive cobalt (Co) exposure increases risks of public health. This study aimed to evaluate the potential mechanism of microbe-derived antioxidants (MA) blend fermented by probiotics in attenuating cobalt chloride (CoCl2)-induced toxicology in buffalo rat liver (BRL3A) cells. Herein, results showed that some phenolic acids increased in MA compared with the samples before fermentation through UHPLC-QTOF-MS analysis. Also, the contents of essential and non-essential amino acids, their derivatives and minerals were rich in MA. The DPPH, O2-, OH- and ABTS+ scavenging ability of MA is comparable to those of vitamin C and better than mitoquinone mesylate (mitoQ). In vitro cell experiments showed that CoCl2 treatment increased the percentage of apoptosis cells, lactate dehydrogenase and genes involved in glycolysis, increased ATP production and decreased mitochondrial membrane potential, increased genes involved in canonical autophagy process (including initiation, autophagosomes maturation and fusion with lysosome) and BNIP3-dependent mitophagy pathways in BRL3A cells, while MA attenuated CoCl2-induced reactive oxygen species (ROS) production, apoptosis, mitochondrial protein expression and dysfunction, and BNIP3-dependent mitophagy. Collectively, these results provide insights into the role of MA in reversing CoCl2-induced toxicology in BRL3A cells, providing the promising constituents for decreasing Co-induced toxicology in functional foods.


Assuntos
Antioxidantes , Mitofagia , Animais , Antioxidantes/metabolismo , Apoptose , Autofagia , Cobalto/metabolismo , Cobalto/toxicidade , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...