Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(19): 9335-9347, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567796

RESUMO

Exogenous photoacoustic contrast agents such as gold nanoparticles are widely utilized in photoacoustic imaging. Enhancing the photoacoustic performance of gold nanoparticles is pivotal for improving the quality and expanding the application scope of photoacoustic imaging. In this work, the photothermal and photoacoustic responses of gold nanospheres surrounded by water excited with a pulsed laser are obtained via a two-temperature model. The interplay between pulse duration and interface thermal resistance and its effect on the photothermal and photoacoustic performances are uncovered quantitatively. The results reveal that, as the pulse duration decreases, increasing the interfacial thermal conductivity can substantially enhance heat transfer between the gold nanosphere and the surrounding water. However, this approach does not effectively enhance the photoacoustic performance. Interestingly, when increasing the thermal conductivity, it was found that there is an optimal pulse duration within the range of 10 ps-10 ns. Employing an incident pulse laser with this optimal pulse duration can maximize the enhancement of the photoacoustic signal.

2.
Phys Chem Chem Phys ; 24(48): 29667-29682, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453140

RESUMO

Photoacoustic imaging techniques with gold nanoparticles as contrast agents have received a great deal of attention. The photoacoustic response of gold nanoparticles strongly depends on the far-field optical properties, which essentially depend on the dielectric constant of the material. The dielectric constant of gold not only varies with wavelength but is also affected by temperature. However, the effect of the temperature dependence of the dielectric constant on gold nanoparticles' photoacoustic response has not been fully investigated. In this work, the Drude-Lorentz model and Mie theory are used to calculate the dielectric constant and absorption efficiency of gold nanospheres in aqueous solution, respectively. Then, the finite element method is used to simulate the heat transfer process of gold nanospheres and surrounding water. Finally, the one-dimensional velocity-stress equation is solved by the finite-difference time-domain method to obtain the photoacoustic response of gold nanospheres. The results show that under the irradiation of a high-fluence nanosecond pulse laser, ignoring the temperature dependence of the dielectric constant will lead to large errors in the photothermal response and the nonlinear photoacoustic signals (it can even exceed 20% and 30%). The relative error of the photothermal and photoacoustic response caused by ignoring the temperature-dependent dielectric constant is determined from both the temperature dependence of absorption efficiency and the maximum temperature increase of gold nanospheres. This work provides a new perspective for the photothermal and photoacoustic effects of gold nanospheres, which is meaningful for the development of high-resolution photoacoustic detectors and nano/microscale temperature measurement techniques.

3.
Nanotechnology ; 28(46): 465403, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28920580

RESUMO

The development of high-performance photocatalysts is central to efforts focused on taking advantage of solar energy to overcome environmental and energy crises. Integrating different functional materials artfully into nanostructures can deliver more efficient photocatalytic activity. Here, sandwiched ZnO@Au@CdS nanorod films were synthesized via successive ZnO nanorod electrodeposition, Au sputtering and CdS electrodeposition. The as-synthesized composites were characterized by UV-vis spectrophotometer, x-ray diffractometer, scanning and transmission electron microscopy. Their photocatalytic activity was assessed by degrading Rhodamine B solution under visible light irradiation. ZnO@Au@CdS exhibited better photocatalytic performance than ZnO@CdS throughout the visible light region, and the corresponding enhancement factor of Au nanoparticles was measured as a function of CdS loading amount, and it could reach 190% with CdS deposition for 1 min. The normalized rate constant could reach 0.387 h-1 for ZnO@Au@CdS-1min, which was equivalent to or better than results in reference photocatalysts. The enhancement mechanism of Au nanoparticles was estimated by comparing the monochromatic photocatalytic action spectra with the absorption spectrum of ZnO@Au@CdS, and it was mainly determined by incident photon energy. With selective excitation of Au nanoparticles by incident photons, the excited hot electrons in Au NPs are transferred to the conduction band of ZnO to boost photocatalytic reaction. With selective excitation of CdS, the enhanced interband absorption of CdS and relay station effect of Au nanoparticles should be responsible for the enhanced photocatalytic performance. Our work not only opens the door to the design of efficient supported photocatalysts, but also helps to understand the enhancement mechanism of LSPR effect on the photoelectric conversion of semiconductors.

4.
Appl Opt ; 56(4): 847-853, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158085

RESUMO

A fiber inline Mach-Zehnder interferometer (MZI) based on a microcavity with two symmetric openings in single-multi-single mode fiber (SMSF) structure is proposed. By using the finite difference beam propagation method (FD-BPM), the interference spectrum simulation result shows that the MZI can still have high-quality interference even if the microcavity deviates along the radial direction for 3 µm. Therefore, it allows a larger fabrication tolerance and tremendously decreases the fabrication difficulty. Then a microcavity with two symmetric openings in SMSF was fabricated by using femtosecond laser-induced water breakdown. The insertion loss of the microcavity immerged in water is only -8 dB, and the MZ interference peak contrast in the transmission spectrum reaches more than 30 dB. The MZI based on the microcavity in SMSF can be used as a practical liquid refractive index sensor as its high-quality interference spectrum, ultrahigh sensitivity (9756.75 nm/RIU), high refractive index resolution (2×10-5 RIU), good linearity (99.93%), and low-temperature crosstalk (0.04 nm/°C).

5.
Phys Chem Chem Phys ; 18(13): 8993-9004, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26966730

RESUMO

Both fabrication of Au nano-objects and the nonlinear optical properties of Au nano-objects are the focus of research. In the present work, Au nanoparticles with different mean sizes (18, 32, 42, and 70 nm) are controllably fabricated in ethanol by changing the concentration of poly(vinylpyrrolidone) (PVP) and HAuCl4, as well as the power of continuous wave UV light at 365 nm. PVP acts as both reducing and protective agent. The mechanism of photoreduction of PVP to HAuCl4 is proposed. PVP undergoes a series of chemical reactions which include the attack of the hydrogen atom on the tertiary carbon atom at the α-position of the nitrogen atom, production of a hydroxyl radical, and chain scission. The hydroxyl radical combines with the hydrogen atom produced through the dissociation of HAuCl4, which facilitates the decomposition of HAuCl4. The fabrication mechanism of Au nanoparticles is discussed. The nonlinear absorption of these Au nanoparticles is investigated; all of them exhibit saturable absorption, and the saturable absorption dominates the nonlinear absorption with the increase of laser energy. The dominance of saturable absorption in the nonlinear absorption is due to the stronger single-photon absorbed intraband absorption from the ground state to the first excited state in the conduction band, the weaker excited state absorption in the conduction band, and the weaker two-photon absorption from the d band to the conduction band.

6.
Appl Opt ; 51(34): 8095-101, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23207379

RESUMO

Femtosecond pulse propagation at λ=802 nm; in microstructured fiber (MF) with zero-dispersion wavelength at 780 nm is studied experimentally and numerically. The temporal and spectral distributions of the femtosecond pulse in MF are demonstrated by using a grating-eliminated no-nonsense observation of ultrafast incident laser light e-fields technique. Soliton fission is directly observed in the experimental results. The simulation of soliton evolution with the propagation distance in time and frequency domain is conducted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...