Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(8): 103930, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908126

RESUMO

Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression.

2.
Microb Pathog ; 186: 106508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141742

RESUMO

Fowl adenovirus serotype 4 (FAdV-4), the causative agent of hepatitis-hydropericardium syndrome (HHS), is a double-stranded DNA virus. Although many structural proteins have been deeply studied, the coding potential of some other open reading frames (ORFs) and the biological functions of their products during virus infection have not been fully elucidated. Here, a unique nonstructural protein ORF1B of FAdV-4 was identified and its expression kinetics along infection was analyzed. Except that of FAdV-10, a member of the same genus as FAdV-4, FAdV-4 ORF1B shared as low homologous identity as 29.2% in amino acid sequence with the other ten counterparts. Structurally, ORF1B was mapped on the N-terminal region of the genome between 1485 nt to 1808 nt and predicted to only contain two α-helix. Confocal immunofluorescence assay with homemade rabbit polyclonal antibody demonstrated that ORF1B could be simultaneously observed with structural protein Fiber 1 in FAdV-4-infected cells. Western blot further showed that ORF1B could only be detected in the infected cells but not mature virions, suggesting ORF1B was a nonstructural protein. Subsequently, the expression level of ORF1B detected by qRT-PCR and IFA was gradually decreased along with FAdV-4 infection, suggesting ORF1B was an early gene transcript. These results will lay a solid foundation to further study the biological effect of ORF1B on the replication and pathogenicity of FAdV-4.


Assuntos
Infecções por Adenoviridae , Doenças das Aves Domésticas , Animais , Coelhos , Infecções por Adenoviridae/veterinária , Sorogrupo , Galinhas , Adenoviridae/genética , Sequência de Aminoácidos
3.
Virol J ; 20(1): 131, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340420

RESUMO

Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.


Assuntos
Processamento Alternativo , Vírus , Vírus/genética , Proteínas Virais/metabolismo , Interações entre Hospedeiro e Microrganismos , RNA Mensageiro/metabolismo , Replicação Viral
4.
Poult Sci ; 101(7): 101941, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35679674

RESUMO

Fowl adenovirus serotype 4 (FAdV-4), the predominant causative agent of hepatitis-hydropericardium syndrome (HHS), has caused severe economic losses to poultry industry since 2015. Although fiber2 and hexon have been confirmed to be the virulence-related factors, the roles of nonstructural viral proteins in pathogenicity of FAdV-4 remain poorly understood. Here, a tandem mass spectrometry (MS) was used to identify host factors interacted with 100K protein of hypervirulent FAdV-4 isolate (CH/HNJZ/2015), and 2595 cellular proteins associated with many biological processes and pathways were identified according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Among the proteins, HSC70 was verified to interact with 100K through co-immunoprecipitation assay. Notably, overexpression of HSC70 promoted the replication of FAdV-4 in LMH cells, whereas blocking HSC70 with inhibitor ver-155008 markedly suppressed viral replication. Collectively, these findings suggested that many cellular proteins involved in FAdV-4 infection through interacting with 100K and HSC70 positively regulated virus replication.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Adenoviridae/genética , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/genética , Galinhas/metabolismo , Sorogrupo , Proteínas Virais/genética , Fatores de Virulência
5.
Appl Microbiol Biotechnol ; 106(5-6): 2053-2062, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35254499

RESUMO

Goose astrovirus (GAstV), the major causative agent of visceral and joint gout in goslings, is a novel pathogen greatly threatening waterfowl industry. Importantly, the horizontal and vertical transmissibility of GAstV posed a great challenge for disease prevention and control. Given the absence of commercial vaccine, restricting vertical transmission and protecting susceptible goslings must be a priority. Although many detection methods have been established, there is no serological method to detect GAstV-specific antibody, greatly limiting inspection and elimination of infected breeding bird. In this study, the B-cell epitopes of GAstV capsid protein were predicted, and its core antigenic advantage domain (shCAP) was expressed and purified. After authenticating the antigenicity, the recombinant shCAP protein was taken as the coating antigen, and an easily accessible indirect enzyme-linked immunosorbent assay (ELISA) was established to detect GAstV-specific antibody. The working conditions, including antigen concentration, serum dilution and incubation time, blocking buffer concentration, and color developing time, were gradually optimized by checkerboard titration. The cut-off OD450 value of the indirect ELISA for positive sample was 0.379, and the analytical sensitivity was 1:800. There was no cross-reaction with sera against goose parvovirus (GPV), Tembusu virus (TUMV), H5 and H7 subtype avian influenza virus (AIV H5 + H7), and Newcastle disease virus (NDV). The assay was further applied to examine 73 breeding goose serum samples and shared excellent agreement of 93.5% (68/73) with western blot, which also suggested that GAstV is circulating in the goose population in China. In conclusion, the developed indirect ELISA is simple, specific, and sensitive, which will be greatly useful to screen GAstV infection and block vertical transmission. KEY POINTS: • B-cell epitopes of GAstV capsid protein were predicted and expressed as immunogen • A core antigenic advantage domain-based ELISA was established to detect GAstV-specific antibody • The established ELISA will contribute to inspection and elimination of infected breeding geese and provide a useful tool for large scale serological testing of GAstV in geese.


Assuntos
Avastrovirus , Doenças das Aves Domésticas , Animais , Anticorpos , Avastrovirus/genética , Ensaio de Imunoadsorção Enzimática , Gansos , Doenças das Aves Domésticas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...