Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Clin Oncol ; 20(3): 24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38410187

RESUMO

Breast cancer is a common tumor encountered in women, and triple-negative breast cancer (TNBC) has an extremely poor prognosis. The effect of leptin on the docetaxel sensitivity of MDA-MB-231 TNBC cells has not been investigated. The present study aimed to clarify the effect of leptin and M2 tumor-associated macrophages (TAMs) on the chemosensitivity of TNBC cell lines and its possible mechanisms. In the present study, the apoptosis of the MDA-MB-231 cell line was detected at 0, 24, 48 and 72 h using a Cell Counting Kit-8 assay to determine the appropriate concentration of docetaxel as well as the IC50 value. After determining the effect of leptin on TAMs, the conditioned medium with an appropriate concentration of docetaxel was collected to treat the breast cancer cells, and flow cytometry was used to detect the cell cycle distribution and apoptosis in different treatment groups. Interleukin 8 (IL-8) expression was detected using ELISA and western blot assay. The IL-8 antibody was used to neutralize IL-8, and invasion and scratch assays were used to detect changes in invasion and migration of breast cancer cells. Statistical analysis was performed using GraphPad Prism 9.0 and SPSS 22.0. It was revealed that the apoptotic rate of MDA-MB-231 cells in the leptin-treated TAMs group was lower than that in other groups. The expression of IL-8 was notably elevated in the group treated with leptin-activated TAMs compared with that in the other groups. The neutralization of IL-8 resulted in a significant reduction in the invasive migration of MDA-MB-231 cells compared with that in the non-neutralized group.

2.
Langmuir ; 39(42): 14859-14868, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37843017

RESUMO

Extended surfactants represent a novel class of anionic-nonionic surfactants with exceptional performance and unique application value in chemically enhanced oil recovery. Although molecular dynamics (MD) simulations can efficiently screen these surfactants, the current research is limited. Here, it is proven for the first time that existing generic force fields (GAFF and CHARMM) cannot accurately describe extended surfactants, and traditional approaches are insufficient for obtaining precise charge parameters. The concept of the respectively optimized force field (ROFF) with the purports of specialization and accuracy is proposed to construct high-accuracy models for MD simulations, and a new approach is developed to simulate the interface model. By combining the newly specialized alkane model, ROFF-based surfactant models, and the innovative simulation protocol, high accuracy and reliability can be obtained in predicting hydration free energies, minimum of area per molecule, and critical micelle concentration of extended surfactants. Key properties of the newly designed extended surfactants in conventional oil-water interfaces and oil reservoir environments are comprehensively predicted by using advanced analytical and characterization methods. Furthermore, the more rigorous mechanism underlying the special amphiphilicity of the extended surfactant is revealed, potentially offering significant improvements over previous empirical perspectives.

3.
Phys Chem Chem Phys ; 23(8): 4681-4689, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33595565

RESUMO

Computational analyses of the solid-state properties of triazasumanene (TAS), a C3-symmetric nitrogen-doped sumanene derivative, were carried out in this work. The present studies are mainly divided into two parts. In the first part, we demonstrated the differences in the interactions of the crystal packing between the racemic and the homochiral structures: the former having perpendicular columnar packing and the latter forming slipped helical packing. Two geometries of the TAS monomer, a theoretically optimized structure under vacuum and an X-ray crystal structure in experiment, were compared. It can be found that it is not the total interaction energy, but the local interactions (mainly the electrostatic interactions) of the molecular dimer that dominate the columnar stacking conformation. The second part involves the investigation of the potential charge transport properties of the crystals according to the semiclassical Marcus theory with the hopping mechanism using the simple dimer model. The charge transfer integrals of the two sets of dimers, racemic and homochiral dimer models, were compared as well. The calculation results show that the TAS racemic crystal was predicted to have an advantage of hole transport properties. The perpendicular columnar stacking of the homochiral conformation should essentially have better charge transport properties than the racemic conformation. It is reasonable to employ the simple dimer model built using optimized monomers under vacuum for the purpose of the prediction of the molecular packing conformation by IES calculation and the charge transport properties of the perpendicular columnar-stacking crystal. Our work provides a simple approach to the deep understanding of the structure-property relationship of bowl-shaped molecular systems in theory. It can help to facilitate the design and preparation of heteroatom-doped sumanene derivatives with perpendicular columnar stacking crystals as novel organic semiconductor materials.

4.
Cellulose (Lond) ; 28(2): 1139-1152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33191988

RESUMO

In this work, a novel formulation of polysulfobetaine, poly (sulfobetaine-acrylamide-allyl glycidyl ether) (PSPB-AM-AGE), was synthesized and grafted onto cotton. The synthesis of PSPB-AM-AGE and its grafting on the cotton fabrics were confirmed by FTIR, XPS and SEM. The PSPB-AM-AGE treated cotton fabrics exhibited a high level of antibacterial rate against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which are 95.18% and 98.74%, separately, as well as a good laundry durability. The mechanical tests showed that the essential cotton properties can be largely preserved in the treatment process. Moreover, the hydrophilicity, air and water permeability of the cotton were improved after treated with PSPB-AM-AGE, indicating a better wearing comfort performance. The whiteness of the cotton fabrics did not decrease significantly. The safety evaluation demonstrated that PSPB-AM-AGE had no cytotoxicity. The developed antibacterial finishing introduced a new method to apply polysulfobetaine interfaced on cellulose, providing great potential for biomedical fabric application.

5.
J Colloid Interface Sci ; 571: 142-154, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199267

RESUMO

In this work, birnessite-type δ-MnO2 nanoflowers were uniformly deposited on 3D nickel foam (NF) by one-step hydrothermal route for high-efficient activation of peroxymonosulfate (PMS) towards degradation of acid orange 7 (AO7). High specific surface area, large pore volume and 3D hierarchical structure promotes the mass and electron transfer for great catalytic activity. Low reaction energy barrier (Ea = 27.5 kJ/mol) and outstanding reusability with extremely low manganese leaching during recycling (<0.06 mg/L) was achieved due to the 3D hierarchical structure which could effectively avoid the agglomeration of nano-sized MnO2. SO4- was confirmed to be the predominant reactive species for AO7 decomposition by electron spin resonance and quenching tests. The synergistic catalytic mechanism of MnO2/NF and the role of inner-sphere complexation between the active sites of MnO2 and peroxymonosulfate were thoroughly investigated. Compared with traditional nano/micro-sized catalysts, 3D macroscopic MnO2/NF with facile recovery and high stability potentially facilitates fascinating applications as green heterogeneous catalysis approach.

6.
Sci Rep ; 7: 44683, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294180

RESUMO

To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.

7.
J Phys Chem A ; 120(27): 4812-7, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26866389

RESUMO

Fulminates containing the CNO(-) ion have been widely utilized as high-energy density materials (HEDMs) for more than 120 years. Yet no purely covalently bound CNO molecule, i.e., nitrile oxide, is known to behave as an HEDM. In this study, we performed a thorough investigation of the potential energy surface of nitrile oxide ONCNO and related isomers, applying various sophisticated methods including G4, CBS-QB3, W1BD, CCSD(T)/CBS, and CASPT2/CBS. The Gibbs free energy calculations showed that the decomposition of ONCNO to the considerably endothermic products CNO + NO is favored compared to that into the highly exothermic products CO2 + N2. Thus, ONCNO fails to be the long expected nitrile oxide HEDM. However, with the rate-determining barrier of 23.3 kcal mol(-1) at the W1BD level, ONCNO should be experimentally accessible.

8.
Dalton Trans ; 44(1): 345-50, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25382394

RESUMO

The inverse sandwich Ca-C8H8-Ca is predicted to be an open-shell singlet state. Since the C8H8 ligand prevents the spin-up and spin-down electrons of different calcium atoms from forming Ca-Ca bonds, the spin-coupling electrons lead to a singlet diradical character. The metal-ligand interaction contributes to the stability of Ca-C8H8-Ca against dissociation and isomerization. For the coordination complex (DME)3Ca-C8H8-Ca(DME)3, the open-shell singlet state is unavailable, while the closed-shell singlet state with direct Ca-Ca bonds is more favorable, because dimethyl ether molecules could push the spin-paired electrons of different calcium atoms to migrate towards the direction of Ca-Ca bonding. For Ca-C4H4-Ca, the ground state is an open-shell singlet state, of which the diradical character is very similar to that of Ca-C8H8-Ca. For (DME)3Ca-C4H4-Ca(DME)3, the lowest energy is the triplet state.

9.
Chemosphere ; 109: 106-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24873714

RESUMO

The effect of Cl(-) on the oxidative degradation of Acid Orange 7 (AO7) was investigated in UV/S2O8(2-) system to elucidate the chlorination pathways in saline wastewaters. Lower amount of Cl(-) as well as Br(-) enhanced the decoloration of AO7, but such promotion effect reduced gradually with the increasing halide ion dosage. The dye mineralization was found to be inhibited by Cl(-), especially under acidic conditions. Results of kinetics modeling demonstrated that the fraction of different oxidizing radicals largely depended on the content of Cl(-). At the initial pH of 6.5, Cl2(-) was much more abundant than SO4(-). The significance of Cl2(-) for AO7 degradation increased with the increasing Cl(-) concentration and overwhelmed that of SO4(-) at [Cl(-)]>1mM. Without Cl(-), SO4(-) was the predominant radical for AO7 degradation under acidic conditions, while OH prevailed gradually at higher pH. Under high salinity conditions, more OH can be formed and contributed to the dye degradation especially in alkaline medium, leading to higher destruction efficiency of AO7. Several chlorinated byproducts were detected in the presence of chloride ions, and SO4(-)/Cl2(-)-based degradation pathways of AO7 were proposed. This work provides further understanding of the complex reaction mechanisms for SO4(-)-based advanced oxidation processes in chloride-rich environments.


Assuntos
Radicais Livres/química , Cloreto de Sódio/química , Sulfetos/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Compostos Azo/química , Benzenossulfonatos/química , Cloretos/química , Corantes/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Oxirredução
10.
Dalton Trans ; 41(9): 2755-63, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22234619

RESUMO

Reactions of CrCl(2)(THF)(2) with N-aryl-9,10-iminophenanthraquinone in CH(2)Cl(2) give the monoimine chromium complexes (Ar)IPQCrCl(2)(THF)(2) (1, Ar = 2,6-Me(2)C(6)H(3); 2, Ar = 2,6-Et(2)C(6)H(3); 3, Ar = 2,6-(i)Pr(2)C(6)H(3)). Molecular structures of 1 and 3 were revealed to be monomeric with the chromium atoms in distorted octahedral geometries. Similar reactions of CrCl(2)(THF)(2) with N,N-bis(arylimino)phenanthrene ligands afford the diimine complexes (Ar1,Ar2)BIPCrCl(µ-Cl)(3)Cr(THF)(Ar1,Ar2)BIP (4, Ar(1) = Ar(2) = 2,6-Me(2)C(6)H(3); 5, Ar(1) = Ar(2) = 2,6-Et(2)C(6)H(3); 6, Ar(1) = Ar(2) = 2,6-(i)Pr(2)C(6)H(3); 7, Ar(1) = 2,6-Me(2)C(6)H(3), Ar(2) = 2,6-(i)Pr(2)C(6)H(3)). The X-ray diffraction analysis shows that 4, 5, and 7 are chlorine-bridged dimers with each chromium atom in a distorted octahedral geometry. Upon activation with MAO, all these complexes exhibit good catalytic activities for isoprene polymerization affording polyisoprene with predominantly a cis-1,4 unit.

11.
Phys Chem Chem Phys ; 12(41): 13637-45, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20856968

RESUMO

Among the fascinating planar tetracoordinate carbon (ptC) species, pentaatomic molecules belong to the smallest class, well-known as "pptC". It has been generally accepted that the planarity of pptC structure is realized via the "delocalization" of the p(z) lone pair at the central carbon and the ligand-ligand bonding interaction. Although "localization" is as key driving force in organic chemistry as "delocalization", the "localization" concept has not been applied to the design of pptC molecules, to the best of our knowledge. In this paper, we apply the "localization" strategy to design computationally a series of new pptC. It is shown that the central carbon atom and one "electronegative" ligand atom X (compared to the Al ligand) effectively form a highly localized C-X multiple bond, converting the lone pair at the central carbon to a two-center two-electron π-bond. At the aug-cc-pVTZ-B3LYP, MP2 and CCSD(T) levels, the designed 18-valence-electron pptC species [XCAl(3)](q); [(X,q) = (B,-2), (C,-1), (N,0)] are found to each possess a stable ptC structure bearing a C-X double bond, indicated by the structural, molecular orbital, Wiberg bonding, potential energy surface and Born-Oppenheimer molecular dynamics (BOMD) analysis. Moreover, our OVGF calculations showed that the presently disclosed (yet previously unconsidered) pptC structure of [C(2)Al(3)](-) could well account for the observed photoelectron spectrum (previously only ascribed to a close-energy fan-like structure). Therefore, [C(2)Al(3)](-) could be the first pptC that bears the highly localized C-X double bond that has been experimentally generated. Notably, the pptC structure is the respective global minimum point for [BCAl(3)](2-) and [NCAl(3)], and the counterion(s) would further stabilize [BCAl(3)](2-) and [C(2)Al(3)](-). Thus, these newly designed pptC species with interesting bonding structure should be viable for future experimental characterization. The presently applied "localization" approach complements well the previous "delocalization" one, indicating that the general "localization vs. delocalization" concept in organic chemistry can be effectively transplanted to exotic pptC chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...