Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 20(6): 467-475, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31090272

RESUMO

The stem/progenitor cell has long been regarded as a central cell type in development, homeostasis, and regeneration, largely owing to its robust self-renewal and multilineage differentiation abilities. The balance between self-renewal and stem/progenitor cell differentiation requires the coordinated regulation of cell cycle progression and cell fate determination. Extensive studies have demonstrated that cell cycle states determine cell fates, because cells in different cell cycle states are characterized by distinct molecular features and functional outputs. Recent advances in high-resolution epigenome profiling, single-cell transcriptomics, and cell cycle reporter systems have provided novel insights into the cell cycle regulation of cell fate determination. Here, we review recent advances in cell cycle-dependent cell fate determination and functional heterogeneity, and the application of cell cycle manipulation for cell fate conversion. These findings will provide insight into our understanding of cell cycle regulation of cell fate determination in this field, and may facilitate its potential application in translational medicine.


Assuntos
Ciclo Celular , Fenômenos Fisiológicos Celulares , Animais , Epigenômica , Fase G1 , Fase G2 , Humanos , Pesquisa Translacional Biomédica
2.
J Integr Plant Biol ; 53(9): 710-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21605340

RESUMO

In rice, one detrimental factor influencing single panicle yield is the frequent occurrence of panicle apical abortion (PAA) under unfavorable climatic conditions. Until now, no detailed genetic information has been available to avoid PAA in rice breeding. Here, we show that the occurrence of PAA is associated with the accumulation of excess hydrogen peroxide. Quantitative trait loci (QTLs) mapping for PAA in an F(2) population derived from the cross of L-05261 (PAA line) × IRAT129 (non-PAA variety) identified seven QTLs over a logarithm of the odd (LOD) threshold of 2.5, explaining approximately 50.1% of phenotypic variance for PAA in total. Five of the QTLs with an increased effect from L-05261, were designated as qPAA3-1, qPAA3-2, qPAA4, qPAA5 and qPAA8, and accounted for 6.8%, 5.9%, 4.2%, 13.0% and 12.2% of phenotypic variance, respectively. We found that the PAA in the early heading plants was mainly controlled by qPAA8. Subsequently, using the sub-populations specific for qPAA8 based on marker-assisted selection, we further narrowed qPAA8 to a 37.6-kb interval delimited by markers RM22475 and 8-In112. These results are beneficial for PAA gene clone.


Assuntos
Genes de Plantas/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Mapeamento Físico do Cromossomo/métodos , Proteínas de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Peróxido de Hidrogênio/metabolismo , Repetições de Microssatélites/genética , Fenótipo , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...