Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417242

RESUMO

BACKGROUND: Asthma affects 3% of the global population, leading to over 0.25 million deaths. Due to its complexity, asthma is difficult to cure or prevent, and current therapies have limitations. This has led to a growing demand for alternative asthma treatments. We found rosmarinic acid (RosA) as a potential new drug candidate from natural medicine. However, RosA has poor bioavailability and remains mainly in the gastrointestinal tract after oral administration, suggesting the involvement of gut microbiota in its bioactivity. PURPOSE: To investigate the mechanism of RosA in alleviating allergic asthma by gut-lung axis. METHODS: We used 16S rRNA gene sequencing and metabolites analysis to investigate RosA's modulation of gut microbiota. Techniques of molecular biology and metabolomics were employed to study the pharmacological mechanism of RosA. Cohousing was used to confirm the involvement of gut microbiota in RosA-induced improvement of allergic asthma. RESULTS: RosA decreased cholate levels from spore-forming bacteria, leading to reduced 5-hydroxytryptamine (5-HT) synthesis, bronchoconstriction, vasodilation, and inflammatory cell infiltration. It also increased short-chain fatty acids (SCFAs) levels, facilitating the expression of intestinal tight junction proteins to promote intestinal integrity. SCFAs upregulated intestinal monocarboxylate transporters (MCTs), thereby improving their systemic delivery to reduce Th2/ILC2 mediated inflammatory response and suppress eosinophil influx and mucus production in lung. Additionally, RosA inhibited lipopolysaccharide (LPS) production and translocation, leading to reduced TLR4-NFκB mediated pulmonary inflammation and oxidative stress. CONCLUSIONS: The anti-asthmatic mechanism of oral RosA is primarily driven by modulation of gut microbiota-derived 5-HT, SCFAs, and LPS, achieving a combined synergistic effect. RosA is a safe, effective, and reliable drug candidate that could potentially replace glucocorticoids for asthma treatment.


Assuntos
Asma , Ácido Rosmarínico , Humanos , Imunidade Inata , RNA Ribossômico 16S/genética , Lipopolissacarídeos , Serotonina , Linfócitos , Asma/tratamento farmacológico , Asma/metabolismo , Pulmão/metabolismo , Ácidos Graxos Voláteis/metabolismo
2.
Biomed Pharmacother ; 169: 115916, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38000354

RESUMO

Silybin (SIL) is a versatile bioactive compound used for improving liver damage and lipid disorders and is also thought to be beneficial for atherosclerosis (AS). The goal of this study was to investigate the efficacy of SIL in the treatment of AS in ApoE-/-mice fed a high-fat diet and explore the mechanism underlying treatment outcomes. We found that SIL significantly alleviated AS-related parameters, including the extent of aortic plaque formation, hyperlipidemia, and adhesion molecule secretion in the vascular endothelium. 16 S rRNA gene sequencing analysis, together with the application of antibiotics, showed that intestinal butyrate-producing bacteria mediated the ameliorative effect of SIL on AS. Further analysis revealed that SIL facilitated butyrate production by increasing the level of butyryl-CoA: acetate CoA-transferase (BUT). The increased expression of monocarboxylic acid transporter-1 (MCT1) induced by butyrate and MCT4 induced by SIL in the apical and basolateral membranes of colonocytes, respectively, resulted in enhanced absorption of intestinal butyrate into the circulation, leading to the alleviation of arterial endothelium dysfunction. Moreover, the SIL-mediated increase in intestinal butyrate levels restored gut integrity by upregulating the expression of tight junction proteins and promoting gut immunity, thus inhibiting the AS-induced inflammatory response. This is the first study to show that SIL can alleviate AS by modulating the production of bacterial butyrate and its subsequent absorption.


Assuntos
Aterosclerose , Butiratos , Camundongos , Animais , Butiratos/farmacologia , Butiratos/uso terapêutico , Butiratos/metabolismo , Silibina/farmacologia , Bactérias/metabolismo , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos
3.
Biomed Pharmacother ; 163: 114754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094549

RESUMO

Metformin (MTF) and berberine (BBR) share several therapeutic benefits in treating metabolic-related disorders. However, as the two agents have very different chemical structure and bioavailability in oral route, the goal of this study is to learn their characteristics in treating metabolic disorders. The therapeutic efficacy of BBR and MTF was systemically investigated in the high fat diet feeding hamsters and/or ApoE(-/-) mice; in parallel, gut microbiota related mechanisms were studied for both agents. We discovered that, although both two drugs had almost identical effects on reducing fatty liver, inflammation and atherosclerosis, BBR appeared to be superior over MTF in alleviating hyperlipidemia and obesity, but MTF was more effective than BBR for the control of blood glucose. Association analysis revealed that the modulation of intestinal microenvironment played a crucial role in the pharmacodynamics of both drugs, in which their respective superiority on the regulation of gut microbiota composition and intestinal bile acids might contribute to their own merits on lowering glucose or lipids. This study shows that BBR may be a good alternative for MTF in treating diabetic patients, especially for those complicated with dyslipidemia and obesity.


Assuntos
Berberina , Hiperlipidemias , Metformina , Cricetinae , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Berberina/farmacologia , Berberina/uso terapêutico , Obesidade/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Lipídeos/uso terapêutico
4.
J Ethnopharmacol ; 306: 116158, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36638854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY: The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS: The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS: We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS: Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.


Assuntos
Isquemia Encefálica , Microbiota , Ratos , Animais , Eixo Encéfalo-Intestino , Fosfatidilinositol 3-Quinases , Ácidos Graxos Voláteis/metabolismo , Infarto Cerebral
5.
Signal Transduct Target Ther ; 6(1): 77, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33623004

RESUMO

The phenylalanine-tyrosine-dopa-dopamine pathway provides dopamine to the brain. In this process, tyrosine hydroxylase (TH) is the rate-limiting enzyme that hydroxylates tyrosine and generates levodopa (L-dopa) with tetrahydrobiopterin (BH4) as a coenzyme. Here, we show that oral berberine (BBR) might supply H• through dihydroberberine (reduced BBR produced by bacterial nitroreductase) and promote the production of BH4 from dihydrobiopterin; the increased BH4 enhances TH activity, which accelerates the production of L-dopa by the gut bacteria. Oral BBR acts in a way similar to vitamins. The L-dopa produced by the intestinal bacteria enters the brain through the circulation and is transformed to dopamine. To verify the gut-brain dialog activated by BBR's effect, Enterococcus faecalis or Enterococcus faecium was transplanted into Parkinson's disease (PD) mice. The bacteria significantly increased brain dopamine and ameliorated PD manifestation in mice; additionally, combination of BBR with bacteria showed better therapeutic effect than that with bacteria alone. Moreover, 2,4,6-trimethyl-pyranylium tetrafluoroborate (TMP-TFB)-derivatized matrix-assisted laser desorption mass spectrometry (MALDI-MS) imaging of dopamine identified elevated striatal dopamine levels in mouse brains with oral Enterococcus, and BBR strengthened the imaging intensity of brain dopamine. These results demonstrated that BBR was an agonist of TH in Enterococcus and could lead to the production of L-dopa in the gut. Furthermore, a study of 28 patients with hyperlipidemia confirmed that oral BBR increased blood/fecal L-dopa by the intestinal bacteria. Hence, BBR might improve the brain function by upregulating the biosynthesis of L-dopa in the gut microbiota through a vitamin-like effect.


Assuntos
Berberina/farmacologia , Di-Hidroxifenilalanina/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Berberina/análogos & derivados , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/microbiologia , Dopamina/metabolismo , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Humanos , Levodopa/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Tirosina 3-Mono-Oxigenase/genética
6.
Cancer Biomark ; 15(6): 833-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406409

RESUMO

AIMS: To clone and express Siva1 protein, and to investigate the role of Siva1 protein in proliferation, apoptosis, invasion, and migration of human nasopharyngeal carcinoma cell line CNE-2 in vitro and in vivo. METHODS: The PCR fragment of Siva1 from human nasopharyngeal carcinoma cell line CNE-2 were double digested with BamHI and SalI and then induced into the pQE30 vector double digested by the same enzymes. The pQE30 vector harboring Siva1 was introduced into M15 competent cells and then induced by isopropyl ß -D-1-thiogalactopyranoside (IPTG). The Siva1 fusion protein was identified by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and then separated and purified by Ni-affinity chromatography. Subsequently, the effects of recombinant Siva1 protein on proliferation, apoptosis, invasion and migration were assayed in vitro and in vivo. RESULTS: The transformed cells expressed Siva1 fusion protein with a molecular weight of approximately 12 kDa. Cell counting kit-8 (CCK-8) assay showed that the Siva1 protein significantly inhibited the proliferation of the CNE-2 cells at a concentration of 10 µ mol/L. In addition, compared to the control, the Siva1 protein promoted the apoptosis of the cancer cells. And, the Siva1 protein greatly suppressed the invasion and migration of the cancer cells. In vivo, the Siva1 protein significantly inhibited the tumor growth of the tumor-bearing mice. Further, the Siva1 treatment markedly upregulated Bax, caspase-3, and downregulated Bcl-2 protein levels in the transplanted tumor tissue. CONCLUSIONS: The Siva1 protein has a significant anticancer activity on human nasopharyngeal carcinoma cell line CNE-2 including inhibiting proliferation, invasion, migration and promoting apoptosis of the cancer cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Nasofaríngeas/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/genética , Western Blotting , Carcinoma , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Physiol Biochem ; 34(6): 2180-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25562164

RESUMO

BACKGROUND: Multiple MicroRNAs (miRNAs) have been identified in the development and progression of osteosarcoma. However, the expression and roles of miR-212 in osteosarcoma remain largely undefined. METHODS: Real-time PCR assays were used to detect the expression of miR-212 in human osteosarcoma tissues. MiR-212 mimics were introduced into MG63 and U2OS cells. Bioinformatic prediction was used to identify the potential targets of miR-212. Protein expression analysis, luciferase assays and rescue assays were used to confirm the substrate of miR-212. RESULTS: miR-212 was significantly down-regulated in human osteosarcoma tissues, compared with adjacent normal tissues. Introduction of miR-212 mimics into MG63 and U2OS cells inhibited cell proliferation and invasion. Besides, miR-212 overexpression could also inhibit tumor growth in the nude mice. Additionally, bioinformatic prediction suggested that the sex-determining region Y-box 4 (Sox4) is a target gene of miR-212. Sox4 inhibition phenocopied the roles of miR-212, while restored expression of Sox4 dampened miR-212-mediated suppression of tumor progression. CONCLUSION: The miR-212/Sox4 interaction plays an important role of in the osteosarcoma progression.


Assuntos
Carcinogênese/genética , MicroRNAs/genética , Osteossarcoma/genética , Fatores de Transcrição SOXC/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica/genética , Osteossarcoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...