Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 263: 116552, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39038400

RESUMO

Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 µA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.

2.
Tree Physiol ; 42(2): 325-336, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34387352

RESUMO

Resprouting plants are distributed in many vegetation communities worldwide. With increasing resprout age post-severe-disturbance, new stems grow rapidly at their early age, and decrease in their growth with gradually decreasing water status thereafter. However, there is little knowledge about how stem hydraulic strategies and anatomical traits vary post-disturbance. In this study, the stem water potential (Ψstem), maximum stem hydraulic conductivity (Kstem-max), water potential at 50% loss of hydraulic conductivity (Kstem  P50) and anatomical traits of Caragana korshinkii resprouts were measured during a 1- to 13-year post-disturbance period. We found that the Kstem-max decreased with resprout age from 1-year-old resprouts (84.2 mol m-1 s-1 MPa-1) to 13-year-old resprouts (54.2 mol m-1 s-1 MPa-1) as a result of decreases in the aperture fraction (Fap) and the sum of aperture area on per unit intervessel wall area (Aap). The Kstem  P50 of the resprouts decreased from 1-year-old resprouts (-1.8 MPa) to 13-year-old resprouts (-2.9 MPa) as a result of increases in vessel implosion resistance (t/b)2, wood density (WD), vessel grouping index (GI) and decreases in Fap and Aap. These shifts in hydraulic structure and function resulted in an age-based divergence in hydraulic strategies i.e., a change from an acquisitive strategy to a conservative strategy, with increasing resprout age post-disturbance.


Assuntos
Caragana , Folhas de Planta , Caules de Planta , Água , Madeira , Xilema
3.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4381-4390, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951279

RESUMO

The damage mechanism of salt stress on plants has attracted much attention. In order to reveal the damage mechanism of different salt stresses, we compared osmotic regulation and photosynthetic characteristics of seedlings of wheat cultivar Xianhan 3 under sodium salt (150 mmol·L-1) and calcium salt (5, 30 mmol·L-1) treatments alone or in combination. The results showed that sodium salt or calcium salt stress alone significantly inhibited the growth of roots and stems, but increased the amount of soluble sugar and proline, regulatory energy-dissipated electron yield, non-photochemical quenching and relative content of zeaxanthin contents in leaves. In contrast, salt treatments alone significantly decreased the levels of chlorophyll a and chlorophyll b, maximum photochemical efficiency, PSⅡ photochemical efficiency, photochemical quenching and photosynthetic electron transport efficiency. Furthermore, the inhibition of wheat seedling growth was more sensitive to calcium salt than to sodium salt stress, whereas the decreases of chlorophyll content and chlorophyll fluorescence parameters were more prominent in response to sodium salt stress. Except for the amount of soluble protein, lutein and the relative level of zeaxanthin, the changes of other parameters in the leaves due to sodium salt stress were effectively blocked by the application of low calcium concentration, but further increased by the presence of high calcium salt concentration. Taken together, sodium or calcium salt stress alone significantly inhibited seedling growth. The toxicity of sodium salt to wheat seedlings was effectively alleviated by low calcium concentration, but was aggravated by high calcium concentration, which were associated with the changes of photosynthetic pigment content, light energy capture, and photosynthetic electron transport process in the leaves of wheat seedlings. Moreover, osmotic regulators played an important role in enhancing the resistance of wheat seedlings to sodium or/and calcium environment.


Assuntos
Plântula , Triticum , Clorofila , Clorofila A , Fluorescência , Fotossíntese , Folhas de Planta , Estresse Salino
4.
New Phytol ; 229(1): 230-244, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749703

RESUMO

Clarifying the coordination of leaf hydraulic traits with gas exchange across closely-related species adapted to varying rainfall can provide insights into plant habitat distribution and drought adaptation. The leaf hydraulic conductance (Kleaf ), stomatal conductance (gs ), net assimilation (A), vein embolism and abscisic acid (ABA) concentration during dehydration were quantified, as well as pressure-volume curve traits and vein anatomy in 10 Caragana species adapted to a range of mean annual precipitation (MAP) conditions and growing in a common garden. We found a positive correlation between Ψleaf at 50% loss of Kleaf (Kleaf P50 ) and maximum Kleaf (Kleaf-max ) across species. Species from low-MAP environments exhibited more negative Kleaf P50 and turgor loss point, and higher Kleaf-max and leaf-specific capacity at full turgor, along with higher vein density and midrib xylem per leaf area, and a higher ratio of Kleaf-max : maximum gs . Tighter stomatal control mediated by higher ABA accumulation during dehydration in these species resulted in an increase in hydraulic safety and intrinsic water use efficiency (WUEi ) during drought. Our results suggest that high hydraulic safety and efficiency combined with greater stomatal sensitivity triggered by ABA production and leading to greater WUEi provides drought tolerance in Caragana species adapted to low-MAP environments.


Assuntos
Caragana , Secas , Folhas de Planta , Água , Xilema
5.
Sci Rep ; 7(1): 11248, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900140

RESUMO

Seed germination behavior is an important factor in the distribution of species. Many studies have shown that germination is controlled by phylogenetic constraints, however, it is not clear whether phylogenetic constraints or environmental cues explain seed germination of a genus from a common ancestor. In this study, seed germination under different temperature- and water-regimes [induced by different osmotic potentials of polyethylene glycol (PEG)] was investigated in the phylogenetically-related Caragana species that thrive in arid, semiarid, semihumid and humid environments. The results showed that the final percentage germination (FPG) decreased from 95% in species from arid habitats to 0% in species from humid habitats, but with no significant phylogenetic signal. Rather, the response of seed germination to temperature and PEG varied greatly with species from arid to humid habitats and was tightly linked to the ecological niche of the species, their seed coat structure and abscisic acid concentration. The findings are not consistent with the hypothesis that within a family or a genus, seed germination strategies can be a stable evolutionary trait, thus constraining interspecific variation, but the results clearly show that seed germination of Caragana species distributed across a range of habitats has adapted to the environment of that habitat.


Assuntos
Caragana/crescimento & desenvolvimento , Sinais (Psicologia) , Exposição Ambiental , Germinação , Sementes/crescimento & desenvolvimento , Caragana/genética , Clima , Umidade , Pressão Osmótica , Filogenia , Polietilenoglicóis/metabolismo , Sementes/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...