Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 167: 105563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33746053

RESUMO

Macrophages are heterogeneous cells that have different physiological functions, such as chemotaxis, phagocytosis, endocytosis, and secretion of various factors. All physiological functions of macrophages are integral to homeostasis, immune defense and tissue repair. However, in several diseases, macrophages are recruited from the blood towards inflammatory sites. This process is called macrophage migration, which promotes deleterious disease progression. Macrophage migration is a key player in many inflammatory diseases, autoimmune diseases and cancers because it contributes to the accumulation of proinflammatory factors, the destruction of tissues and the development of tumors. Therefore, macrophage migration is proposed to be a potential therapeutic target. Macrophages migrate between two-dimensional (2D) and three-dimensional (3D) environments, implying that distinct migratory features and mechanisms are involved. Compared with the 2D migration of macrophages, 3D migration involves more complex variations in cellular morphology and dynamics. The structure of the extracellular matrix, a key factor, is modified in diseases that influence macrophage 3D migration. Macrophage 3D migration relates to disease pathology. Research that focuses on macrophage 3D migration is an emerging field and was reviewed in this article to indicate the molecular and cellular mechanisms of macrophage migration in 3D environments and to provide potential targets for controlling disease progression associated with this migration.


Assuntos
Movimento Celular , Inflamação/patologia , Macrófagos/patologia , Animais , Anti-Inflamatórios/farmacologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Descoberta de Drogas , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
2.
Pharmacol Res ; 167: 105513, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617975

RESUMO

A large number of macrophages in inflamed sites not only amplify the severity of inflammatory responses but also contribute to the deleterious progression of many chronic inflammatory diseases, autoimmune diseases and cancers. Macrophage migration is a prerequisite for their entry into inflammatory sites and their participation of macrophages in the pathologic processes. Inhibition of macrophage migration is therefore a potential anti-inflammatory mechanism. Moreover, alleviation of inflammation also prevents the macrophages infiltration. Sinomenine (SIN) is an alkaloid derived from the Chinese medicinal plant Sinomenium acutum. It has multiple pharmacological effects, including anti-inflammation, immunosuppression, and anti-arthritis. However, its anti-inflammatory molecular mechanisms and effect on macrophage migration are not fully understood. The purpose of this research was to investigate the pharmacological effects and the molecular mechanism of SIN on macrophage migration in vivo and in vitro as well as to elucidate its anti-inflammatory mechanisms associated with macrophage migration. Our results showed that SIN reduced the number of RAW264.7 cells migrating into inflammatory paws and blocked lipopolysaccharide (LPS)-induced RAW264.7 cells and bone marrow-derived macrophages (BMDMs) migration in vitro. Furthermore, SIN attenuated the 3D mesenchymal migration of BMDMs. The absence of macrophage migration after circulatory and periphery macrophages depletion led to a reduction in the severity of inflammatory response. In macrophages depleted (macrophages-/-) mice, as inflammatory severity decreased, RAW264.7 cells migration was suppressed. A non-obvious effect of SIN on the inflammatory response was found in macrophages-/- mice, while the inhibitory effect of SIN on RAW264.7 cells migration was still observed. Furthermore, the migration of RAW264.7 cells pre-treated with SIN was suppressed in normal mice. Finally, Src/focal adhesion kinase (FAK)/P130Cas axis activation, which supports macrophages mesenchymal migration, and iNOS expression, NO production, integrin αV and in integrin ß3 expressions, which promote Src/FAK/P130Cas activation, were down-regulated by SIN. However, SIN had no obvious effect on the expression of the monocyte chemoattractant protein-1 (MCP-1), which is an important chemokine for macrophage migration. These results indicated that SIN significantly inhibited macrophage mesenchymal migration by down-regulating on Src/FAK/P130Cas axis activation. There was a mutual regulatory correlation between the inflammatory response and macrophage migration, and the effects of SIN on macrophage migration were involved in its anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Morfinanos/farmacologia , Animais , Anti-Inflamatórios/química , Proteína Substrato Associada a Crk/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Morfinanos/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Sinomenium/química , Quinases da Família src/metabolismo
3.
Pharmacol Res ; 166: 105510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610720

RESUMO

Cardiovascular disease (CVD), including heart failure, myocardial fibrosis and myocardial infarction, etc, remains one of the leading causes of mortality worldwide. Evidence shows that miRNA plays an important role in the pathogenesis of CVD. miR-29 family is one of miRNA, and over the past decades, many studies have demonstrated that miR-29 is involved in maintaining the integrity of arteries and in the regulation of atherosclerosis, especially in the process of myocardial fibrosis. Besides, heart failure, myocardial fibrosis and myocardial infarction are inseparable from the regulatory role of miR-29. Here, we comprehensively review recent studies regarding miR-29 and CVD, illustrate the possibility of miR-29 as a potential marker for prevention, treatment and prognostic observation.


Assuntos
Doenças Cardiovasculares/genética , MicroRNAs/genética , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Fibrose , Regulação da Expressão Gênica , Humanos , MicroRNAs/análise , Miocárdio/patologia , Prognóstico
4.
Int Immunopharmacol ; 29(2): 302-313, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26548348

RESUMO

Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease. As RA progresses, the hyperplastic synovial pannus creates a hypoxic, inflammatory environment that induces angiogenesis. Further vascularization of the synovial tissue promotes pannus growth and continued infiltration of inflammatory leukocytes, thus perpetuating the disease. Pristimerin inhibits inflammation and tumor angiogenesis. The present study focused on the inhibition of angiogenesis by Pristimerin in adjuvant-induced arthritic rats and the underlying molecular mechanisms. Our results clearly demonstrate for the first time that Pristimerin significantly reduces vessel density in synovial membrane tissues of inflamed joints and reduces the expression of pro-angiogenic factors in sera, including TNF-α, Ang-1, and MMP-9. Pristimerin also decreased the expression of VEGF and p-VEGFR2 in the synovial membrane, whereas the total amount of VEGFR2 remained unchanged. Pristimerin suppressed the sprouting vessels of the aortic ring and inhibited VEGF-induced HFLS-RA migration in vitro. Pristimerin also inhibited VEGF-induced proliferation, migration and tube formation by HUVECs, blocked the autophosphorylation of VEGF-induced VEGFR2 and consequently downregulated the signaling pathways of activated PI3K, AKT, mTOR, ERK1/2, JNK, and p38 in VEGF-induced HUVECs. Our results indicate that Pristimerin suppressed synovial angiogenesis in our rat model and in vitro by interrupting the targeting of VEGFR2 activation. Therefore, Pristimerin has potential as an angiogenesis inhibitor in the treatment of rheumatoid arthritis.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Artrite Experimental/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Triterpenos/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Angiopoietina-1/antagonistas & inibidores , Animais , Artrite Experimental/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Neovascularização Patológica/patologia , Triterpenos Pentacíclicos , Ratos , Ratos Sprague-Dawley , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...