Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 144: 106045, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919285

RESUMO

Atmospheric aerosols are a branch of active research in recent decades. The deposition of light-absorbing substances on high-altitude glaciers causes substantial adverse impacts on the cryospheric environment, cryosphere-hydrology, and climate system. Although, the concentrations of water-soluble organic carbon (WSOC) in snow/ice on glaciers of Tibetan Plateau (TP) have been reported, their transfer processes and optical properties in the context of summer precipitation-atmosphere-snow-river water continuum are seldom studied. In this study, we have systematically examined some scientific issues associated with WSOC concentrations and light absorption properties of WSOC in various forms of samples from the Mt. Yulong region. Statistical results demonstrate that the spatial distribution of WSOC in the snow of Baishui glacier was heterogeneous. The average WSOC concentrations of each snowpit were significantly decreased, and its light-absorbing properties were significantly elevated with the time extension. Aerosol WSOC concentrations and light absorption have distinct spatial disparity and seasonal variation. Pre-monsoon and monsoon have the highest and lowest WSOC content, respectively. Whereas the light-absorbing properties present contrasting seasonal trends. Rivers of which runoff was supplied by glacier meltwater have significantly lower WSOC concentrations (e.g., 0.42 ± 0.03 mg L-1) compared with other forms of water bodies. Mass absorption cross-section of WSOC (MAC-WSOC) in multiple snow and meltwater samples was significantly different and type-dependent. Atmospheric aerosol has the lowest MAC-WSOC value among the four types of samples, which was likely associated with exhaust emissions from private vehicles and tour buses. Statistical results indicated that the average AAE330-400 values of various snow/ice samples are subequal. Snow of glaciers supplies a desirable platform for the deposition of gaseous materials which experienced long-range transport in high altitude zones. Biomass-burning emissions made an immense contribution to the WSOC deposition over the study area, as demonstrated by the distribution of active fire points. However, this preliminary study represents the first systematic investigation of WSOC deposition in southeastern TP. Further robust in-situ field investigations and laboratory measurements are urgently necessary to improve our understanding of the transfer process and optical property of WSOC.


Assuntos
Poluentes Atmosféricos , Neve , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Tibet , Água
2.
Environ Pollut ; 253: 207-220, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310871

RESUMO

Characterizing the vertical distribution of aerosol optical properties is crucial to reduce the uncertainty in quantifying the radiative forcing and climate effects of aerosols. The analysis of four-year (2007-2010) Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar measurements revealed the existence of tropospheric aerosol layers associated with the Asian summer monsoon. The measurements of five typical aerosol optical and microphysical parameters were used to explore the properties, spatial/vertical distributions, annual evolution of tropopause aerosols over the South Asia region. Results extracted from various latitude-height and longitude-height cross sections of aerosol extinction coefficient at 532 and 1064 nm, backscatter coefficient at 532 nm, and depolarization ratio at 532 nm demonstrated that a large amount of aerosols vertically extended up to the tropopause (12 km) during the monsoon season over the north Arabian Sea, India, north Bay of Bengal, and equatorial Indian Ocean, finally reaching the southeast of the Tibetan Plateau. Convective transport associated with Asian summer monsoon is an important factor controlling the vertical distribution of tropopause aerosols. The evolution of aerosol scattering ratio at 532 nm indicated that from equatorial Indian Ocean to South Asia, there exists an upward tilting and ascending structure of the aerosols layer during the monsoon season, which typically indicates enhanced aerosols over the Asian monsoon region. Information on aerosol size distribution and detailed composition are needed for better understanding the nature and origin of this aerosol layer. Enhancement of the tropopause aerosols should be considered in the future studies in evaluating the regional or global climate systems. Further satellite observations of aerosols and in-situ observations are also urgently needed to diagnose this aerosol layer, which likely originate from anthropogenic emissions.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Ásia , Atmosfera/química , Clima , Índia , Oceano Índico , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...