Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 403: 130862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768664

RESUMO

Humus is the stable form of carbon storage in straw compost. The phenol-amine reaction is a pathway for humus formation in straw compost. In this study, two reaction systems, GP group (pyrogallol and glycine) and GCP group (catechol, pyrogallol, and glycine), were constructed in a simulated composting environment and revealed the molecular binding mechanism of the phenol-amine reaction through spectroscopy and mass spectrometry. The results showed that phenolic self-polymerization was faster than phenol-amine reaction. Therefore, the aromatization degree of GP was 27.14 % higher than that of GCP. The phenol-amine reaction first produced fulvic acid, and then formed humus units rich in active functional group structures (i.e., phenolic hydroxyl and carboxyl groups). These units further captured small molecule compounds to form humic acid eventually. This study would provide theoretical support for exploring the humus formation process and the promotion of straw humification by adding phenol or amino acids to compost.


Assuntos
Aminas , Compostagem , Substâncias Húmicas , Espectrometria de Massas , Fenol , Substâncias Húmicas/análise , Aminas/química , Compostagem/métodos , Espectrometria de Massas/métodos , Fenol/química , Solo/química , Fenóis , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida
2.
Bioresour Technol ; 401: 130709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636877

RESUMO

Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.


Assuntos
Alginatos , Temperatura Baixa , Álcool de Polivinil , Percepção de Quorum , Esgotos , Alginatos/farmacologia , Alginatos/química , Álcool de Polivinil/química , Esgotos/microbiologia , Anaerobiose , Metano/metabolismo
3.
Environ Res ; 251(Pt 1): 118596, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442810

RESUMO

n-Caproic acid is a widely used biochemical that can be produced from organic waste through chain elongation technology. This study aims to evaluate the environmental impacts of n-caproic acid production through chain elongation by two processes (i.e., shunting and staged technology). The Open-life cycle assessment (LCA) model was used to calculate the environmental impacts of both technologies based on experimental data. Results showed that the shunting technology had higher environmental impacts than the staged technology. Water and electricity made bigger contribution to the environmental impacts of both technologies. Reusing chain elongation effluent substituting for water and using electricity produced by wind power could reduce the environmental impacts of water and electricity effectively. Using ethanol from food waste had higher global warming potential than fossil ethanol, which suggested that a cradle-to-grave LCA is needed to be carried out for specific raw materials and chain elongation products in the future.


Assuntos
Meio Ambiente , Perda e Desperdício de Alimentos
4.
Sci Total Environ ; 923: 171550, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461981

RESUMO

To reduce pollution and carbon emissions, a quantitative evaluation of the carbon footprint of the wastewater treatment processes is crucial. However, micro carbon element flow analysis is rarely focused considering treatment efficiency of different technology. In this research, a comprehensive carbon footprint analysis is established under the micro carbon element flow analysis and macro carbon footprint analysis based on life cycle assessment (LCA). Three wastewater treatment processes (i.e., anaerobic anoxic oxic, A2O; cyclic activated sludge technology, CAST; modified cyclic activated sludge technology, M-CAST) for low carbon source urban wastewater are selected. The micro key element flow analysis illustrated that carbon source mainly flows to the assimilation function to promote microorganism growth. The carbon footprint analysis illustrated that M-CAST as the optimal wastewater treatment process had the lowest global warming potential (GWP). The key to reduce carbon emissions is to limit electricity consumption in wastewater treatment processes. Under the comprehensive carbon footprint analysis, M-CAST has the lowest environmental impact with low carbon emissions. The sensitivity analysis results revealed that biotreatment section variables considerably reduced the environmental impact on the LCA and the GWP, followed by the sludge disposal section. With this research, the optimization scheme can guide wastewater treatment plants to optimize relevant treatment sections and reduce pollution and carbon emissions.

5.
Bioresour Technol ; 399: 130575, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479629

RESUMO

Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.


Assuntos
Compostagem , Gases de Efeito Estufa , Zeolitas , Gases de Efeito Estufa/análise , Zeolitas/química , Solo/química , Metano/análise , Carvão Vegetal , Nitrogênio/análise , Óxido Nitroso/análise
6.
Chemosphere ; 350: 141092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169202

RESUMO

The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.


Assuntos
Compostagem , Substâncias Húmicas , Malonatos , Sequestro de Carbono , Solo , Bactérias/genética , Carbono , Firmicutes , Esterco
7.
J Environ Manage ; 351: 119952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171126

RESUMO

Composting is an environmentally friendly method that facilitates the biodegradation of organic solid waste, ultimately transforming it into stable end-products suitable for various applications. The element iron (Fe) exhibits flexibility in form and valence. The typical Fe-related additives include zero-valent-iron, iron oxides, ferric and ferrous ion salts, which can be targeted to drive composting process through different mechanisms and are of keen interest to academics. Therefore, this review integrated relevant literature from recent years to provide more comprehensive overview about the influence and mechanisms of various Fe-related additives on composting process, including organic components conversion, humus formation and sequestration, changes in biological factors, stability and safety of composting end-products. Meanwhile, it was recommended that further research be conducted on the deep action mechanisms, biochemical pathways, budget balance analysis, products stability and application during organic solid waste composting with Fe-related additives. This review provided guidance for the subsequent targeted application of Fe-related additives in compost, thereby facilitating cost reduction and promoting circular economy objectives.


Assuntos
Compostagem , Resíduos Sólidos , Ferro , Solo , Biodegradação Ambiental , Compostos Ferrosos
8.
Sci Total Environ ; 912: 169171, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072261

RESUMO

This study aims to investigate the effect of microbial role distribution in microbial carbon pumps on dissolved organic matter (DOM) humification during rice straw composting with microbial inoculation. Three composting groups were designed, named CK (control), B4 (with Bacillus subtilis, OR058594) and Z1 (with Aspergillus fumigatus, AF202956.1). As a result of inoculation, the composition of microbial communities was changed, so that the microorganisms that promoted DOM humification were concentrated in the responders in the microbial carbon pump. DOM was divided into three components in three composting treatments: C1, C2 and C3. After inoculation with Bacillus subtilis, the C2 component was significantly affected, while after inoculation with Aspergillus fumigatus, the C3 component was significantly affected. The results of physicochemical factors affecting the transformation of DOM fluorescence components indicated that C1, C2 and C3 were related to the abundance of the cellulose-degrading enzyme-encoding gene GH7 in CK and B4 composting. However, the C2 was susceptible to organic matter in Z1 composting. This study explored the distribution of microbial communities from a new perspective, which provided new information for analyzing DOM humification and treating agricultural straws to achieve clean conditions for environmental friendliness.


Assuntos
Compostagem , Oryza , Substâncias Húmicas/análise , Matéria Orgânica Dissolvida , Bacillus subtilis , Carbono , Solo
9.
Water Res ; 250: 121057, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157601

RESUMO

Extracellular polymeric substances (EPS) regulated by quorum sensing (QS) could directly mediate adhesion between microorganisms and form tight microbial aggregates. Besides, EPS have redox properties, which can facilitate electron transfer for promoting electroactive bacteria. Currently, the applications research on improving wastewater biological treatment performance based on QS regulated EPS have been widely reported, but reviews on the level of QS regulated EPS to enhance EPS function in microbial systems are still lacking. This work proposes the potential mechanisms of EPS synthesis by QS regulation from the viewpoint of material metabolism and energy metabolism, and summarizes the effects of QS on EPS synthesis. By synthesizing the role of QS in EPS regulation, we further point out the applications of QS-regulated EPS in wastewater biological treatment, which involve a series of aspects such as strengthening microbial colonization, mitigating membrane biofouling, improving the shock resistance of microbial metabolic systems, and strengthening the electron transfer capacity of microbial metabolic systems. According to this comprehensive review, future research on QS-regulated EPS should focus on the exploration of the micro-mechanisms, and economic regulation strategies for QS-regulated EPS should be developed, while the stability of QS-regulated EPS in long-term production experimental research should be further demonstrated.


Assuntos
Percepção de Quorum , Águas Residuárias , Polímeros , Esgotos/microbiologia , Reatores Biológicos/microbiologia
10.
Bioresour Technol ; 389: 129826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806361

RESUMO

The research aims to clarify role of ferrous sulfate (FeSO4) combined with zeolite (Z) on humification degree based on investigation of concentration and structural stability of humic acid (HA) during food waste composting. Four treatments were set up, namely CK (control), Fe (5 %), Z (5 %) and Fe + Z (2.5 %+2.5 %). Results demonstrated that concentration and polymerization degree of HA were 53.4 % and 97.3 % higher in composting amended with Fe + Z than in the control, respectively. Meanwhile, formation of aromatic functional groups and recalcitrant fluorescent components (HAC3) was significantly promoted, indicating that Fe + Z treatment enhanced HA structure stability. The bacterial networks became tighter, and the proportion of core bacteria in dominant modules increased at Fe + Z treatment. Additionally, key factors affecting HAC3 and product quality were identified by structural equation models, which verified potential mechanism of humification enhancement. Overall, this study provided theoretical support for improving humification degree and product quality.


Assuntos
Compostagem , Eliminação de Resíduos , Zeolitas , Solo , Alimentos , Substâncias Húmicas/análise , Ferro , Bactérias , Íons , Esterco
11.
J Environ Manage ; 345: 118881, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659372

RESUMO

The Heilongjiang River Basin is a vast area with significant DOM sources and composition differences. The mechanism of DOM degradation under spatial variation remains unclear. This research investigated the degradation characteristics of DOM in different watersheds of the Heilongjiang River. DOM levels were higher in midstream waters, while DOM degradation rates were higher in midstream and downstream waters. The parallel factor analysis (PARAFAC) results showed that the upstream amino acid fraction was significantly depleted, the midstream was dominated by the degradation of DOM of terrestrial origin, and the downstream humic acid fraction was decreased considerably. Gene sequencing results indicated that the upstream, middle, and downstream water bodies' microbial community composition and structure differed significantly. The network analysis results revealed microorganisms in upstream water bodies mainly utilized amino acid-like substances and small molecule humic acids. Microorganisms in the middle and lower reaches of the water column were characterized by the utilization of humic acid-like fractions. In this study, we further screened the key driving microorganisms (e.g., Flavobacterium and Lacibacter) responsible for the difference in the DOM utilization function of upstream-to-midstream and midstream-to-downstream microorganisms in the Heilongjiang River. These findings will help identify the cycling process of DOM under spatial variation and predict the succession pattern of microbial communities.


Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Aminoácidos , Ciclismo , Água
12.
Bioresour Technol ; 387: 129615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544542

RESUMO

The long duration of landfill stabilization is one of the challenges faced by municipalities. In this paper, a combination of micro-aeration and leachate recirculation is used to achieve rapid degradation of organic matter in landfill waste. The results showed that the content of volatile fatty acids (VFAs) in the hydrolysis phase increased significantly and could enter the methanogenic phase quickly. Until the end of the landfill, the removal rates of chemical oxygen demand (COD), total phosphorus (TP) and ammonia nitrogen (NH4+-N) by micro-aeration and leachate recirculation reached 80.17 %, 48.30 % and 48.56 %, respectively, and the organic matter degradation rate reached 50 %. Micro-aeration and leachate recirculation enhanced the abundance of facultative hydrolytic bacteria such as Rummeliibacillus and Bacillus and the oxygen tolerance of Methanobrevibacter and Methanoculleus. Micro-aeration and leachate recirculation improved the organic matter degradation efficiency of landfill waste by promoting the growth of functional microorganisms.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Hidrólise , Instalações de Eliminação de Resíduos , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Aceleração , Poluentes Químicos da Água/química , Eliminação de Resíduos/métodos , Reatores Biológicos
13.
Chemosphere ; 341: 139995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652241

RESUMO

As two emerging pollutants of great concern, microplastics (MPs) and antibiotics inevitably cooccur in various aquatic environments and interact with each other, impacting the fate and ecological risks. Aging obviously complicates their interaction and deserves further study. Therefore, the adsorption-desorption behaviors of ciprofloxacin (CIP) onto polystyrene (PS) fragments with various aging extent were investigated, and the key physiochemical properties influencing the interaction and the interaction mechanisms were clarified by redundancy analysis, FTIR and XPS spectra. The physicochemical properties of PS MPs were significantly changed with aging time, and the morphological and chemical changes seemed to occur asynchronously. The adsorption of CIP onto the pristine PS MPs relied on physisorption, especially the ion-involving electrostatic and cation-π interaction. Due to the hydrogen bonding formed by the C-OH, CO, and O-CO groups of PS and CIP, the adsorption capacities of the aged PS MPs were greatly increased. The desorption efficiency of CIP from MPs in the gastric fluid was closely related to the solution ionic strengths, C-OH and CO groups of MPs, while that in the intestinal fluid was associated with O-CO groups of MPs. The different impact factors could be well described by the differences in the chemical components and pHs of the simulated gastric and intestinal fluids. This study gives a comprehensive understanding of the adsorption-desorption behaviors of antibiotics onto MPs at a molecular level and indicates that MPs could act as Trojan horses to transport antibiotics into aquatic organisms.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Poliestirenos/análise , Plásticos/química , Ciprofloxacina/análise , Adsorção , Poluentes Químicos da Água/análise , Microplásticos/química , Antibacterianos
14.
Sci Total Environ ; 901: 166492, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611701

RESUMO

Chicken manure, as an organic solid waste with a high nitrogen content, generates large amounts of ammonia during composting, which leads to pollution of the surrounding environment, and causes a reduction in the quality of the compost product. Nitrogen is transformed through the nitrogen cycle and bacterial communities are the main contributors to the transformation of the nitrogen cycle. The microbial composition changes dramatically at different stages during composting. Therefore, calcium superphosphate (SSP) was added to compost as a nitrogen-fixing agent to elucidate the strategy and function of the bacterial community involved in the nitrogen cycle. The results showed that the addition of SSP at the initial, high temperature and cooling stages increased the inorganic nitrogen (NH4+-N, NO3--N) content by 51.99 %, 202.72 % and 173.37 % compared to CK, respectively. In addition, nitrogen cycle functional genes (gdh, nifH, pmoA-amoA, hao, nxrA, nirK, napA, nosZ, narG) abundance were determined by real-time qPCR. The nitrogen cycle genetic results showed that SSP addition at high temperature phase resulted in a 62.43 % down-regulation of ammonification genes, while nitrogen fixation and nitrification genes were enhanced. Random forests revealed a shift in the participation strategy of bacterial communities (e.g., Mycobacterium, Izemoplasmatales, Paracoccus, Ruminococcus) within the nitrogen cycle, leading to altered importance rankings despite involvement in different nitrogen cycle pathways. Moreover, Regression analysis and structural equation modelling revealed that SSP addition at high temperature stage stimulated the bacterial community engaged in nitrogen fixation and nitrification, resulting in increased nitrogen accumulation as NO3--N during composting. This paper offers the potential to yield novel scientific insights into the impact of microbially mediated nitrogen transformation processes and reduce gaseous pollution.

15.
Bioresour Technol ; 387: 129644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558106

RESUMO

Anaerobic granular sludge (AnGS) has a complex and important internal microbial communication system due to its unique microbial layered structure. As a concentration-dependent communication system between bacterial cells through signal molecules, QS (quorum sensing) is widespread in AnGS and exhibits great potential to regulate microbial behaviors. Therefore, the universal functions of QS in AnGS have been systematically summarized in this paper, including the influence on the metabolic activity, physicochemical properties, and microbial community of AnGS. Subsequently, the common QS-based AnGS regulation approaches are reviewed and analyzed comprehensively. The regulation mechanism of QS in AnGS is analyzed from two systems of single bacterium and mixed bacteria. This review can provide a comprehensive understanding of QS functions in AnGS systems, and promote the practical application of QS-based strategies in optimization of AnGS treatment process.


Assuntos
Microbiota , Esgotos , Esgotos/microbiologia , Percepção de Quorum , Anaerobiose , Bactérias/metabolismo
16.
Pest Manag Sci ; 79(11): 4547-4556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427488

RESUMO

BACKGROUND: How parasitoids distinguish hosts from non-hosts remains an unknown question. Chouioia cunea Yang (Eulophidae) is an important fall webworm parasitoid that attacks many forest and agricultural pests. To study the differences in the chemical clues used by C. cunea to distinguish host and non-host plants, we used gas chromatography-mass spectrometry (GC-MS) to identify volatile compounds of two C. cunea hosts (Hyphantria cunea and Helicoverpa armigera) and two non-hosts (Spodoptera exigua and Spodoptera frugiperda). Additionally, we used behavioral assays to compare the attraction of C. cunea to various compounds. RESULTS: The two natural host species were more attractive than the two non-host species, in the following order: Hyphantria cunea > Helicoverpa armigera > S. exigua = S. frugiperda. The pupae of the natural hosts contained 1-dodecene, which was not produced by the two natural non-hosts. When the 'attractants' based on the difference between the species-specific blend emitted by pupae and the optimal blend were sprayed onto the natural non-host pupae, they significantly improved the attraction of C. cunea to the non-host pupae. CONCLUSION: These results revealed that specific host-produced volatile compounds guide C. cunea to distinguish between natural hosts and non-hosts. Overall, this study provides a foundation for developing a behavior-modifying strategy to re-direct C. cunea attacks to control important non-host pests. © 2023 Society of Chemical Industry.

17.
Clin Exp Med ; 23(7): 3189-3204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37322134

RESUMO

Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Inibidores de Checkpoint Imunológico , Imunoterapia , Linfócitos T , Microambiente Tumoral
18.
Bioresour Technol ; 384: 129360, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336450

RESUMO

Co-composting is an excellent and effective technology for treating livestock manure in which microorganisms play a crucial function. Therefore, this study aimed at investigating the changes of microbial interactions during co-composting. Six different addition ratios of chicken and pig manure were used in composting experiment. The results showed that the co-composting system using 60% chicken manure and 40% pig manure significantly altered the microbial diversity and community structure. In addition, the complexity and tightness of its microbial community network structure reached the maximum, as did the strength of its cooperative and competitive microbial interactions. The higher microbial abundance and microbial interaction have the potential to promote the decomposition and transformation of compost components. Therefore, this study preliminarily revealed the changes of microbial community in co-composting, which provided a theoretical basis for optimizing microbial community interaction in composting systems by mixing different ratios of materials in practice.


Assuntos
Compostagem , Microbiota , Suínos , Animais , Esterco , Galinhas , Gado , Solo
19.
Sci Rep ; 13(1): 8332, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221287

RESUMO

The effects of different tillage management practices on the soil aggregates, soil carbon stock (STCS), and soil nitrogen stock (STNS) are key issues in agricultural research. We conducted an 8-year field experiment to evaluate the effects of different tillage methods: stubble cleaning and ridging (CK), no-tillage with stubble retention (NT), plow tillage (PT), and width lines (WL) on soil aggregates, STCS, and STNS in the black soil corn continuous cropping area of Northeast China. Different tillage methods predominantly affected the soil aggregates in the 2-0.25 mm and 0.25-0.053 mm size classes. The PT methods increased the proportion of macroaggregates and improved the quality of the soil aggregates. PT methods significantly increased the soil organic carbon content at the 0-30 cm layer by changing the number of soil macroaggregates. The PT practices are better strategies for enhancing soil carbon sinks, and the WL method increased the total amount of N in the soil pool. Our results suggest that the PT and WL methods are the best strategies for improving the quality of soil aggregates and preventing/reducing depletion of soil C and N in a black soil area of Northeast China.

20.
Waste Manag ; 167: 55-63, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245396

RESUMO

With the rapid development of the LED industry, gallium (Ga)-bearing waste generated is regarded as one of the most hazardous as it typically contains heavy metals and combustible organics. Traditional technologies are characterized by long processing routes, complex metal separation processes and significant secondary pollution emission. In this study, we proposed an innovative and green strategy to selectively recovery Ga from Ga-bearing waste by using a quantitative phase-controlling transition process. In the phase-controlling transition process, the gallium nitride (GaN) and indium (In) are converted to alkali-soluble gallium (III) oxide (Ga2O3) and alkali-insoluble indium oxides (In2O3) by oxidation calcination, while nitrogen is converted into diatomic nitrogen gas instead of ammonia/ammonium (NH3/NH4+). By selective leaching with NaOH solution, nearly 92.65% of Ga can be recycled with a leaching selectivity of 99.3%, while little emissions of NH3/NH4+. Ga2O3 with a purity of 99.97% was obtained from the leachate which is also economy promising by economic assessment. Therefore, the proposed methodology compared to the conventional acid and alkali leaching methods is potentially greener and more efficient process for extracting valuable metals from nitrogen-bearing solid waste.


Assuntos
Resíduo Eletrônico , Gálio , Índio , Resíduo Eletrônico/análise , Nitrogênio , Álcalis , Reciclagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...