Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121713, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986368

RESUMO

Spirulina platensis contains abundant nitrogen-containing organics, which might react with derivatives of cellulose/lignin during hydrothermal carbonization (HTC), probably affecting yield, property of hydrochar, and pore development in activation of hydrochar. This was investigated herein by conducting co-HTC of spirulina platensis with cellulose, lignin, and sawdust at 260 °C and subsequent activation of the resulting hydrochars with K2C2O4 at 800 °C. The results showed that cross-condensation of spirulina platensis-derived proteins with cellulose/lignin-derived ketones and phenolics did take place in the co-HTC, forming more π-conjugated heavier organics, retaining more nitrogen species in hydrochar, reducing yields of hydrochar, making the hydrochar more aromatic and increasing the thermal stability and resistivity towards activation. This enhanced the yield of activated carbon (AC) by 7 %-20 % and significantly increased specific surface area of the AC from activation of hydrochar of spirulina platensis + lignin to 2074.5 m2/g (859.3 m2/g from spirulina platensis only and 1170.1 m2/g from lignin only). Furthermore, more mesopores from activation of hydrochar of spirulina platensis + cellulose (47 %) and more micropores from activation of hydrochar of spirulina + sawdust (93 %) was generated. The AC from spirulina platensis + lignin with the developed pore structures generated sufficient sites for adsorption of tetracycline from aqueous phase and minimized steric hindrance for mass transfer with the abundant mesopores (43 %).

2.
J Environ Manage ; 356: 120571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513584

RESUMO

Nitrous oxide (N2O) emissions from soils are a significant environmental concern due to their contribution to greenhouse gas emissions. Biochar has been considered as a promising soil amendment for its potential to influence soil processes. Iron modification of biochar has been extensively discussed for its ability to enhance adsorption of pollutants, yet its impact on mitigating soil N2O emissions remains poorly understood. In the present study, corn straw (CB) and wood (WB) biochars were treated with FeSO4/FeCl3 (SCB and SWB) and Fe(NO3)3 (NCB and NWB). The effects of these biochars on soil N2O emissions were investigated using soils with varying fertility levels over a 35-day incubation period at 20 °C. Results revealed significant variations in biochar surface chemistry depending on biochar feedstock and iron salts. Compared to pristine biochars, NWB and NCB exhibited higher pH, total N content, and dissolved NO3-N concentrations (246 ± 17 and 298 ± 35 mg kg-1, respectively), but lower bulk and surface C content. In contrast, SWB and SCB demonstrated acidic pH and elevated dissolved NH4-N concentrations (5.38 ± 0.43 and 4.19 ± 0.22 mg kg-1, respectively). In forest soils, NWB and NCB increased cumulative N2O emission by 28.5% and 67.0%, respectively, likely due to the introduction of mineral nitrogen evidenced by significant positive correlation with NO3-N or NH4-N. Conversely, SWB and SCB reduced emissions in the same soil by 28.5% and 6.9%, respectively. In agricultural soil, most biochars, except SWB, enhanced N2O emissions, possibly through the release of labile organic carbon facilitating denitrification. These findings underscore the significance of changes in biochar surface chemistry and the associated potential risk in triggering soil N2O emissions. This study highlights the need for a balanced design of biochar that considers both engineering benefits and climate change mitigation.


Assuntos
Óxido Nitroso , Solo , Óxido Nitroso/análise , Sais , Ferro , Carvão Vegetal
3.
Eco Environ Health ; 2(2): 47-60, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38075290

RESUMO

Single-atom catalysts (SACs) have been widely recognized as state-of-the-art catalysts in environment remediation because of their exceptional performance, 100% metal atomic utilization, almost no secondary pollution, and robust structures. Most recently, the activation of persulfate with carbon-based SACs in advanced oxidation processes (AOPs) raises tremendous interest in the degradation of emerging contaminants in wastewater, owning to its efficient and versatile reactive oxidant species (ROS) generation. However, the comprehensive and critical review unraveling the underlying relationship between structures of carbon-based SACs and the corresponding generated ROS is still rare. Herein, we systematically summarize the fundamental understandings and intrinsic mechanisms between single metal atom active sites and produced ROS during AOPs. The types of emerging contaminants are firstly elaborated, presenting the prior pollutants that need to be degraded. Then, the preparation and characterization methods of carbon-based SACs are overviewed. The underlying material structure-ROS type relationship in persulfate-based AOPs is discussed in depth to expound the catalytic mechanisms. Finally, we briefly conclude the current development of carbon-based SACs in AOPs and propose the prospects for rational design and synthesis of carbon-based SACs with on-demand catalytic performances in AOPs in future research.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36429520

RESUMO

The Persulfate-based advanced oxidation process is the most efficient and commonly used technology to remove organic contaminants in wastewater. Due to the large surface area, unique electronic properties, abundant N functional groups, cost-effectiveness, and environmental friendliness, N-doped biochars (NBCs) are widely used as catalysts for persulfate activation. This review focuses on the NBC for oxidative degradation of organics-contaminated wastewater. Firstly, the preparation and modification methods of NBCs were reviewed. Then the catalytic performance of NBCs and modified NBCs on the oxidation degradation of organic contaminants were discussed with an emphasis on the degradation mechanism. We further summarized the detection technologies of activation mechanisms and the structures of NBCs affecting the PS activation, followed by the specific role of the N configuration of the NBC on its catalytic capacity. Finally, several challenges in the treatment of organics-contaminated wastewater by a persulfate-based advanced oxidation process were put forward and the recommendations for future research were proposed for further understanding of the advanced oxidation process activated by the NBC.


Assuntos
Carvão Vegetal , Águas Residuárias , Águas Residuárias/química , Carvão Vegetal/química , Oxirredução , Estresse Oxidativo
5.
Front Chem ; 10: 1022779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176895

RESUMO

Doping of heteroatoms into carbon materials is a popular method to modify their physicochemical structures and has been widely used in the fields of energy conversion and storage. This study aims to investigate the effect of doping atmosphere on the catalytic performance of nitrogen and sulfur co-doped biochar supported Ru in the production of phenolic monomers from lignin hydrogenolysis. The results showed that the catalyst prepared under CO2 atmosphere (Ru@CNS-CO2) was able to produce phenolic monomers from corncob lignin with a yield up to 36.41 wt%, which was significantly higher than that from the run over N2-prepared catalyst (Ru@CNS-N2). The characterization of the catalysts demonstrated that the CNS-CO2 support had a larger specific surface area, richer C=S and C-S groups, and higher oxygen content than CNS-N2, resulting in finer Ru particles and more Ru0 content on the CNS-CO2 support. The Ru@CNS-CO2 catalyst exhibited high activity in hydrogenation and fragmentation of ß-O-4 linkages.

6.
Bioresour Technol ; 347: 126436, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34848331

RESUMO

The conversion of cellulose to platform chemicals has attracted much attention because of its renewability. This work proposed an earth-abundant cobalt disulfide as a heterogeneous catalyst for methyl levulinate production from cellulose. The highest yield of methyl levulinate reached 61 mol% under the tested conditions of 200 °C, 2 MPa initial pressure, 0.45 catalyst/cellulose mass ratio, and 3 h reaction time. The XRD and TEM analyses demonstrated the crystal facet (111) of cobalt disulfide as a robust active site, which was in good agreement with the highest acidity of the crystal facet (111) calculated by the work functions. The XPS characterization showed that the main chemical valence of cobalt disulfide responsible for the methyl levulinate production was the surface Co2+ species. This study is valuable for the development of a recoverable catalyst for the cellulose to methyl levulinate process.


Assuntos
Celulose , Ácidos Levulínicos , Catálise , Cobalto , Dissulfetos
7.
Front Chem ; 7: 943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117859

RESUMO

In this study, biochars derived from waste fiberboard biomass were applied in tetracycline (TC) removal in aqueous solution. Biochar samples were prepared by slow pyrolysis at 300, 500, and 800°C, and were characterized by ultimate analysis, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), etc. The effects of ionic strength (0-1.0 mol/L of NaCl), initial TC concentration (2.5-60 ppm), biochar dosage (1.5-2.5 g/L), and initial pH (2-10) were systemically determined. The results present that biochar prepared at 800°C (BC800) generally possesses the highest aromatization degree and surface area with abundant pyridinic N (N-6) and accordingly shows a better removal efficiency (68.6%) than the other two biochar samples. Adsorption isotherm data were better fitted by the Freundlich model (R 2 is 0.94) than the Langmuir model (R 2 is 0.85). Thermodynamic study showed that the adsorption process is endothermic and mainly physical in nature with the values of ΔH 0 being 48.0 kJ/mol, ΔS 0 being 157.1 J/mol/K, and ΔG 0 varying from 1.02 to -2.14 kJ/mol. The graphite-like structure in biochar enables the π-π interactions with a ring structure in the TC molecule, which, together with the N-6 acting as electron donor, is the main driving force of the adsorption process.

8.
Mater Sci Eng C Mater Biol Appl ; 42: 333-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063126

RESUMO

The purpose of this study is to prepare multifunctional polymer fibers. We report a simple and controllable method for in situ synthesis of Ag nanoclusters (NCs) in electrospun polymer fibers via a photochemical reaction. The prepared composite polymer fibers emit pink luminescence and the luminescence property can be optimized by pH and Ag(I) precursor concentration. The as-prepared Ag NCs in electrospun polymer fibers were mainly Ag2-5 with a quantum yield of 6.81% and a lifetime of 2.29 ns. The in situ growth of Ag NCs avoids excessive surface modifications which may cause the aggregation of Ag NCs in many ex situ assembly methods. The combination of Ag NCs with polymer fibers greatly improves the stability of Ag NCs and broadens their applications. The storage of Ag NCs becomes facilitative due to the formation of bulky mat. Furthermore, these luminescence composite polymer fibers show strong antibacterial activity against Staphylococcus aureus (S. aureus).


Assuntos
Antibacterianos/química , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Polimetil Metacrilato/química , Prata/química , Antibacterianos/farmacologia , Técnicas Eletroquímicas , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos
9.
Mater Sci Eng C Mater Biol Appl ; 33(2): 656-62, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25427470

RESUMO

A green and environment-friendly method for synthesis of water-soluble and fluorescent Ag nanoclusters was developed using carboxymethyl-ß-cyclodextrin (CM-ß-CD) as both reducing and stabilizing reagent. The optical properties of Ag nanoclusters were characterized using the photoluminescence, ultraviolet-visible absorption, and laser desorption time of flight mass spectroscopies. The role of carboxylic groups was discussed in the photoactivated synthesis of Ag nanoclusters. Increasing the substitute of carboxylic groups on CM-ß-CD was propitious to the formation of Ag nanoclusters and the stability of the produced silver nanoclusters was greatly improved. The in vitro antimicrobial ability of the produced Ag nanoclusters was tested. Compared with a silver nitrate solution and a typical Ag colloid, Ag nanoclusters stabilized by CM-ß-CD exhibited greatly strong antimicrobial ability.


Assuntos
Anti-Infecciosos/química , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Prata/química , beta-Ciclodextrinas/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...